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1 Introduction

Theoretical and empirical analyses of supply in differentiated product markets usually assume

that firms have complete information (CI) and set prices to maximize their current profits. If

an alternative is considered, it is typically tacit collusion with repeated CI stage games, which,

in the empirical literature is often modeled using a “conduct parameter” (Bresnahan (1982),

Lau (1982), Nevo (1998)) where each firm uses a standard CI Nash first-order conditions except

that some weight is placed on the profits of its rivals. These CI formulations are tractable and,

under appropriate assumptions, they are econometrically identified (Berry and Haile (2014)).

However, assuming that firms have CI about all factors that may affect their rivals’ pric-

ing choices is a strong assumption. Public companies closely guard information about the

profitability of individual product lines and government agencies presume that information on

revenues, costs and margins is competitively sensitive and highly confidential during antitrust

investigations even while they use models that assume CI to model market outcomes. There

is also surprisingly little evidence that CI oligopoly models accurately predict qualitative or

quantitative changes in pricing behavior after structural changes in market conditions, such as

the consummation of a merger.

It is clearly important to know whether predictions would change, in a material way, if the

CI assumption is relaxed. A natural assumption for an economist is that, when firms have

privately-observed state variables, a firm will try to learn from its rivals’ choices (i.e., their

prices) about those variables, in order to try to more accurately predict how those rivals will

price in the future. If this happens, then firms may also have incentives to distort their prices

in order to affect what their rivals will expect.

We develop models where this logic applies. Specifically, we will assume that each firm has

a payoff-relevant state variable, such as its marginal cost, which is positively but imperfectly

serially-correlated and unobserved by rivals. Prices are perfectly observed. We will consider

fully separating equilibria where, in equilibrium, a firm’s chosen price perfectly reveals its

current cost, and beliefs have a simple form. In these equilibria, all firms that do not have

the lowest possible marginal cost set prices above static best response levels to credibly signal

this information to their rivals. This can, in turn, cause static best response prices to increase,

and signaling prices to rise further, a positive feedback that can cause equilibrium prices to

2



be significantly above static CI Nash levels, although, as we discuss, separating equilibria may

not exist if prices rise too much. The model also explains significant equilibrium volatility in

prices even when the underlying range over which the privately-observed state variables can

vary is very limited. We provide examples where private information about 5 cents, or less

than 1%, of marginal costs, which an empirical economist might be tempted to ignore, can

raise average prices, relative to a static CI model, by more than a couple of dollars or more

than 10%, while increasing the standard deviation of prices by a factor of 40. While a small

theoretical literature has shown that oligopoly signaling can affect equilibrium prices in two-

or three-period models, we provide the first analysis of how large these effects may be, and the

first empirical application.

We apply our model to horizontal merger analysis, as CI Nash first-order conditions are

relied upon by agencies when deciding whether to challenge a proposed transaction. Signaling

is a strategic investment to raise rivals’ future prices, and like many strategic investments, the

equilibrium incentive to invest can rise when the number of competitors is reduced. We use

examples to illustrate that standard static CI merger simulations can significantly underpredict

how much both merging parties and their rivals increase prices, or, equivalently, how large

marginal cost synergies have to be to prevent prices from rising. These biases exist when firms

are symmetric and when there are asymmetries pre-merger.

Our empirical application calibrates our model to data from the U.S. beer market around the

time of the 2008 Miller-Coors (MC) joint venture (JV). Miller and Weinberg (2017) (MW) show

that, after the JV, MC and its larger domestic rival Anheuser-Busch (AB), increased prices in

a way that is inconsistent with static CI Nash pricing, and they estimate a conduct parameter

that rationalizes the average price increases assuming CI. Miller, Sheu, and Weinberg (2020)

(MSW) propose a more complete model of tacit collusion under CI, where domestic brewers set

common supermarkups in each regional market, and they estimate a time preference parameter

to rationalize the size of the post-JV price increase. We take a different approach by calibrating

our dynamic signaling model to match price dynamics in pre-JV data. Without introducing

any additional parameters, we show that our model accurately predicts the observed increase in

average prices and that it also correctly predicts directional changes in which several statistics

that summarize price dynamics.1 On the other hand, a calibrated CI model fits the pre-JV

1Appendix D.9 shows that the assumptions that MW and MSW make on domestic brewer behavior can also
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data less well, and, even when we allow for a post-JV conduct parameter to explain the change

in average prices, it fails to predict how price dynamics change.2

Before discussing the related literature, we should be clear about several limitations of our

analysis, which reflect the novelty of the quantitative exercises we conduct. First, we have to

assume that each firm has exactly one privately-known state variable and can send exactly

one signal per period. This imposes restrictions on the types of mergers that can plausibly

be considered, although we will argue that the assumptions are reasonable in our application.

Second, we only consider fully separating equilibria, even though these may not exist for some

parameters and we can only prove existence and uniqueness in special cases. It is possible that

pooling equilibria could generate substantially larger price effects. Third, folk theorems imply

that collusive conduct under CI could take many forms, some of which might generate similar

changes in price dynamics that our model can generate. Therefore, while we present evidence

against particular collusive models (Appendix D.9), it is not possible to generally reject tacit

collusion as a possible explanation for changes in pricing after a merger. However, our results

do show that tacit collusion or market features that are often considered as pre-requisites of

collusion, such as transparency of costs or firm symmetry, are not required to explain why static

CI Nash pricing models fail to predict accurately.

The rest of this introduction reviews the related literature. Section 2 lays out the model

and the equilibrium concept. Section 3 presents some examples and illustrates the implications

for merger analysis. Section 4 provides our empirical application. Section 5 concludes. The

Appendices, intended for online publication, detail the computational algorithms, additional

examples, a proof of existence and uniqueness for the case of linear demand, and details of the

data and additional empirical analyses.

Related Literature. Shapiro (1986) and Vives (2011) examine how equilibrium prices and

welfare change when marginal costs are private information in one-shot oligopoly models. Most

of our focus will be on models where marginal costs lie in quite narrow intervals and the static

effects that these papers identify are very small. A large theoretical literature has considered

be rejected using alternative exclusion restrictions and richer fixed effects, which suggests that one should be
reluctant to use these models to prospectively predict the effects of mergers.

2Our analysis of price dynamics, and what it implies for firm behavior, is also new to the literature analyzing
horizontal mergers, even though prices are quite volatile in many industries, such as airlines, where mergers
have been extensively studied.
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one-shot signaling models where only one player has private information. The classic Industrial

Organization example is the Milgrom and Roberts (1982) limit pricing model, where an incum-

bent monopolist may lower its first period price to deter entry in a two-period game. Sweeting,

Roberts, and Gedge (2020) develop finite and infinite-horizon versions of this model where an

incumbent monopolist’s type changes over time, as we will assume in this paper.3 They es-

timate the model and show that it can explain why incumbent airlines dropped prices by as

much as 15% when Southwest threatened entry on monopoly routes. The model with several

incumbents considered here is potentially applicable to a much wider range of industries.

The literature on games where multiple players signal simultaneously is limited.4 Mailath

(1988) identifies conditions under which a separating equilibrium will exist in an abstract two-

period game with continuous types, and shows that the conditions on payoffs required for

the uniqueness of each player’s separating best response function are similar to those shown

by Mailath (1987) for models where only one player is signaling (Mailath and von Thadden

(2013) generalize these conditions). Mailath (1989) applies these results to a two-period pricing

game where differentiated firms have static linear demands and marginal costs that are private

information but fixed. Firms raise their prices in the first period in order to try to raise their

rivals’ prices in the second period.5 Mester (1992) extends this approach to a three-period

quantity-setting model where marginal costs change over time, and she shows that signaling,

which leads to increased output in this case, happens in the first two periods.

We rely on Mailath’s results to characterize best response signaling pricing functions, and

we will focus on the magnitude, empirical relevance and implications of the equilibrium effects

in multi-period settings with more standard forms of differentiated product demand. Fersht-

man and Pakes (2012) and Asker, Fershtman, Jeon, and Pakes (2020) develop an alternative

approach to discrete state and discrete action dynamic games with asymmetric information.

They reduce the computational burden using the concept of Experience-Based Equilibrium

(EBE) where firms have beliefs about their payoffs from different actions rather than rivals’

3Kaya (2009) and Toxvaerd (2017) analyze one-sided, dynamic signaling games where the informed firm’s
type is fixed, and, in equilibrium, the informed firm signals until its reputation is established.

4Bonatti, Cisternas, and Toikka (2017) analyze linear signaling strategies in a continuous-time Cournot
game where each firm’s marginal cost is private information and fixed, but firms cannot perfectly observe the
quantities that their rivals choose. We will assume that prices are perfectly observable.

5Caminal (1990) considers a two-period linear demand duopoly model where firms have private information
about the demand for their own product, and also raise prices to signal that they will set higher prices in the
final period.
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types.6 Our equilibrium concept is more standard, and the computational burden is reduced

by focusing on fully separating equilibria in continuous action games.

The conclusion will discuss the relationship between our paper and discussions of coordi-

nated effects in horizontal merger analysis (Ordover (2007), Baker and Farrell (2020), Farrell

and Baker (2021)). Our paper is partly motivated by the empirical horizontal merger retro-

spectives literature that has often found that, presumably contrary to what agencies expected,

prices often rise after mergers are consummated. Ashenfelter, Hosken, and Weinberg (2014) find

that 36 of 49 studies across several industries identify significant post-merger price increases.7

Peters (2009) and Garmon (2017) show that merger simulations and other methods, such as

pricing pressure indices, that are derived from static CI first-order conditions often perform

poorly at predicting price changes after airline and hospital mergers. This leads naturally to

the question of which alternative models can do better.

2 Model

In this section, we present our model. More specific assumptions will be made in our examples

and application.

2.1 Outline.

There are discrete time periods, t = 1, ..., T , where T ≤ ∞, with discount factor 0 < β < 1.

β = 0.99, except when we show that our results are not particularly sensitive to the choice

of discount factor. There are a fixed set of N risk-neutral firms. Each firm either sells a

single-product or sells multiple products, which we will assume are symmetric in demand and

are produced at the same marginal cost, at a single price. There may be observed and fixed

differences in demand and costs across firms, but exactly one dimension of a firm’s type is

private information.

6The rest of the literature on dynamic games, following Ericson and Pakes (1995) and Pakes and McGuire
(1994), has assumed that players observe all state variables apart from iid shocks to the payoffs from different
actions, eliminating any role for signaling.

7Ashenfelter, Hosken, and Weinberg (2014) note that retrospectives have not typically found price increases in
banking. Interestingly, the Mester (1992) analysis of a Cournot oligopoly model with asymmetric information
was explicitly motivated by a desire to explain why, contrary to the predictions of Nash and tacit collusion
models, concentration appeared to lead to more competitive behavior in banking.
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We will consider two different formulations which we will use for different purposes. Our

explanation of the model, our empirical application and the example that we use to provide

intuition for how signaling affects prices will assume that the type is continuous on a known

compact interval [θi, θi]. However, we use a model where firms can have two discrete types, θi

and θi when we want to explore what will happen for many different parameters or different

numbers of firms as the computational burden is lower. In both cases, types are assumed to

evolve exogenously, and independently, from period-to-period according to a first-order Markov

process, ψi : θi,t−1 → θi,t. This assumption is consistent with the treatment of productivity

changes in the structural production function literature following Olley and Pakes (1996) (ex-

cept Doraszelski and Jaumandreu (2013)).

2.2 Within-Period Timing.

In each period t of the game, timing is as follows. Firms enter period t with their t − 1

types, which then evolve according to ψi. Firms observe their own new types, but neither the

previous nor the new types of other firms.8 Each firm then simultaneously chooses a price,

pi,t, with no menu costs. Once a firm sets its period t price, it is unable to change it. A

firm’s profits are given by πi(pi,t, p−i,t, θi,t) and we assume that ∂πi
∂p−i,t

> 0 for all −i. Note

that πi(pi,t, p−i,t, θi,t) only depends on current prices and the firm’s current type, consistent

with static and time-invariant demand. Current and past prices are assumed to be perfectly

observed by each firm.

2.3 Assumptions.

For continuous types, we make the following assumption.

Assumption 1 Type Transitions for the Continuous Type Model. The conditional

pdf ψi(θi,t|θi,t−1)

1. has full support, so that the type can transition from any value on the support to any other

value in a single period.

2. is continuous and differentiable (with appropriate one-sided derivatives at the boundaries).

8Our fully separating equilibria would be unchanged if t− 2 types were revealed.
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3. for any θi,t−1 there is some θ′ such that
∂ψi(θi,t|θi,t−1)

∂θi,t−1
|θi,t=θ′ = 0 and

∂ψi(θi,t|θi,t−1)

∂θi,t−1
< 0 for

all θi,t < θ′ and
∂ψi(θi,t|θi,t−1)

∂θi,t−1
> 0 for all θi,t > θ′.

This assumption implies types are positively, but not perfectly, serially correlated so that a

higher type in one period implies that a higher type in the next period is more likely.

Beliefs about rivals’ types play an important role in our game. In a fully separating equi-

librium, each firm will (correctly) believe that each rival has a particular type in the previous

period. For convenience, we assume that beliefs about types in t = 1 have the same structure.

Assumption 2 Initial Period Beliefs. Firms know what their rivals’ types were in a ficti-

tious prior period, t = 0.

2.4 Fully Separating Equilibrium in a Finite Horizon and Continu-
ous Type Game.

We now describe the equilibrium for a game with two ex-ante symmetric single-product duopolists,

which we will use in our first example.

2.4.1 Final Period (T ).

In the final period, each firm maximizes its expected payoff given its own type, its beliefs about

the its rival’s type and its pricing strategy. Play is therefore consistent with a Bayesian Nash

Equilibrium. If firm j believes that firm i’s period T − 1 type was θ̂ji,T−1 and j’s period T

pricing function is Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1)9, then a type θi,T i will set a price

p∗i,T (θi,T , θj,T−1, θ̂
j
i,T−1) = arg max

pi,T

∫ θj

θj

π(pi,T , Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1), θi,T )ψ(θj,T |θj,T−1)dθj,T .

2.4.2 Earlier Periods (1, .., T − 1).

In earlier periods, i may choose not to set a static best response price in order to affect j’s belief

about its type. The equilibrium concept that we use is symmetric Markov Perfect Bayesian

Equilibrium (MPBE) (Toxvaerd (2008),Roddie (2012) ). An MPBE specifies period-specific

9This notation reflects the fact that we are assuming that player j used an equilibrium strategy in T − 1
that revealed its type (θj,T−1), but we are allowing for the possibility that firm i may have deviated so that j’s
beliefs about i’s previous type are incorrect.
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pricing strategies for each firm i as a function of i’s current type, i’s belief about j’s previous

type, and j’s belief about i’s previous type. It also specifies each firm’s belief about its rival’s

type given observed histories of prices. Equilibrium beliefs should be consistent with Bayes

Rule given equilibrium pricing strategies. If there are multiple rivals, they should all have

the same beliefs given an observed history. While only current types and prices are directly

payoff-relevant, history can matter in this Markovian equilibrium because it affects beliefs. We

will only consider fully separating MPBEs where, in every period, a firm’s equilibrium pricing

strategy perfectly reveals its current type, and j’s belief about i’s current type will come from

inverting i’s pricing function.

2.4.3 Characterization of Separating Pricing Functions in Period t < T .

We follow Mailath (1989), who shows that one can apply the results in Mailath (1987) to

this problem, in characterizing fully separating pricing functions using a definition of firm i’s

period-specific “signaling payoff function”, Πi,t(θi,t, θ̂
j
i,t, pi,t). This is the present discounted

value of firm i’s expected current and future payoffs when its current type is θi,t, it sets price

pi,t and j believes, at the end of period t, that i has type θ̂ji,t. Πi,t is assumed to be continuous

and at least twice differentiable in its arguments. It is implicitly conditional on (i) j’s period

t pricing strategy, which will depend on j’s beliefs about t − 1 types, and (ii) both players’

strategies in future periods. As j’s end-of-period t belief about i’s type enters as a separate

argument, pi,t only affects Πi,t through period t profits. Given conditions on Πi,t that will be

listed in a moment, the fully separating best response function of firm i, which is also implicitly

conditioned on j’s current pricing strategy and beliefs about previous types, can be uniquely

characterized as follows (see Appendix C for a restatement of the Mailath (1987) theorems):

i’s pricing function will be the solution to a differential equation where

∂p∗i,t(θi,t)

∂θi,t
= −

Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

) > 0, (1)

and a boundary condition. The subscript n in Πi,t
n denotes the partial derivative of Πi,t with

respect to the nth argument. Assuming that lower types want to set lower prices (e.g., a type

corresponds to the firm’s marginal cost), the boundary condition will be that p∗i,t(θi) is the
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solution to

Πi,t
3

(
θi, θ̂

j
i,t, pi,t

)
= 0, (2)

i.e., the lowest type’s price maximizes its static expected profits given j’s pricing policy. The

numerator in (1) is i’s marginal future benefit from raising j’s belief about θi,t, and the de-

nominator is the marginal effect of a price increase on i’s current profit. For prices above a

static best response price, the denominator will be negative, and the pricing function will slope

upwards in the firm’s type.

This characterization of a separating best response will be valid under four conditions on

Πi,t, in addition to continuity and differentiability,

Condition 1 Shape of Πi,t with respect to pi,t. For any (θi,t, θ̂
j
i,t), Πi,t

(
θi,t, θ̂

j
i,t, pi,t

)
has a

unique optimum in pi,t, and, for all θi,t, for any pi,t where Πi,t
33

(
θi,t, θ̂

j
i,t, pi,t

)
> 0, there is some

k > 0 such that
∣∣∣Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

)∣∣∣ > k.

Condition 2 Type Monotonicity. Πi,t
13

(
θi,t, θ̂

j
i,t, pi,t

)
6= 0 for all (θi,t, θ̂

j
i,t, pi,t).

Condition 3 Belief Monotonicity. Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
is either > 0 for all (θi,t, θ̂

j
i,t) or < 0

for all (θi,t, θ̂
j
i,t).

Condition 4 Single-Crossing.
Πi,t

3

(
θi,t,θ̂

j
i,t,pi,t

)
Πi,t

2

(
θi,t,θ̂

j
i,t,pi,t

) is a monotone function of θi,t for all θ̂ji,t and

for (θi,t, pi,t) in the graph of p∗i,t(θi,t, θj,t−1).

To interpret these conditions, assume that types correspond to marginal costs. The first

condition will be satisfied if, for any marginal cost and distribution of prices that the rival may

set, a firm’s expected current period profit is quasi-concave in its own price. This will hold

for common forms of differentiated product demand such as the multinomial and nested logit

models. Type monotonicity requires that, when a firm increases its price, the profit that it loses

will be lower if it has higher marginal costs. This will hold for constant marginal costs. Belief

monotonicity requires that a firm’s expected future profits should increase when rivals believe

that it has a higher cost, holding its actual cost fixed. This condition may fail, and Appendix

B.1.2 analyzes an example of failure in a two-type model. Single-crossing requires that a firm
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with a higher marginal cost should always be more willing to raise its price, reducing its current

profits, in order to raise its rivals’ beliefs about its marginal cost. This condition can also fail.

For completeness, we also need to define beliefs that a firm will have if the rival sets a price

that is outside the range of the pricing function (i.e., a price that is not on the equilibrium

path). When types correspond to marginal costs, we will assume that when a firm sets a price

below (above) the lowest (highest) price in the range of the pricing function, it will be inferred

to have the lowest (highest) possible cost type.

2.4.4 Existence and Uniqueness of a Fully Separating Equilibrium.

The conditions defined above guarantee the existence and uniqueness of fully separating best

responses in any period, but this does not prove the existence or uniqueness of a fully separating

equilibrium in the whole game. Mailath (1989) proves existence and uniqueness in a two-

period duopoly game with linear demand and there is private information about marginal

costs. Appendix C proves existence and uniqueness in a finite horizon, linear demand duopoly

game where marginal costs are private information. The proof requires that the marginal cost

interval (θ − θ) is small enough so that a single-crossing condition holds when prices rise. Of

course, in the infinite horizon case, a CI pricing game has many equilibria.

In the continuous type case, if the conditions on payoff functions are satisfied, a firm will

have a unique separating best response function (Mailath (1987)) given the strategies of the

other firms. This is not the case in the two-type model, where it is possible to construct different

separating best responses depending on the beliefs of the other firms. Therefore, in the two-

type case, we need to use a refinement even to find best responses. Specifically, we solve for

the strategies that achieve separation at the lowest cost to the signaling firm, consistent with

the type of “intuitive criterion” (Cho and Kreps (1987)) refinement that has been widely used

in one-sided signaling models with two types.

In our application, we will assume nonlinear demand and, to reduce the computational bur-

den, an infinite horizon. We will therefore proceed without proofs of existence or uniqueness.

Appendix A details how we compute equilibrium strategies, and verify belief monotonicity and

single-crossing as part of the algorithm. We will discuss examples where we cannot find a sepa-

rating equilibrium below. We have only ever found a single equilibrium in finite horizon games
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and infinite horizon games with continuous types, but we have found examples of multiplicity in

infinite horizon games with two types even when we use the refinement to define best response

functions.10

3 Examples

This section uses examples to illustrate equilibrium strategies and outcomes, and how the effects

of signaling (relative to complete information) and the effects of mergers vary with the number

of firms, asymmetries and the discount rate. We also summarize the results of some additional

examples included in the Appendices.

3.1 Illustration of Equilibrium Strategies Using a Finite Horizon
Continuous-Type Duopoly Example.

Specification. There are two ex-ante symmetric single-product firms. Demand is determined

by a nested logit model, with both products in one nest, and the outside good in its own nest.

Consumer c’s indirect utility from buying from product i is ui,c = 5− 0.1pi + σνc + (1− σ)εi,c

where pi is the dollar price, εi,c is a draw from a Type I extreme value distribution, σ = 0.25, and

νc is an appropriately distributed draw for c’s nest preferences. For the outside good, u0,c = ε0,c.

We will set market size equal to 1, so that our welfare numbers have a “per-potential consumer”

interpretation. We examine what happens to strategies in a finite horizon game with T = 25

periods as we believe that this helps to clarify intuitions. The game is solved backwards from

the last period.

We assume that marginal cost is private information, and that, for each firm, it lies in the

interval [c, c] = [$8, $8.05]. Costs evolve independently according to an exogenous truncated

AR(1) process

ci,t = ρci,t−1 + (1− ρ)
c+ c

2
+ ηi,t, (3)

where ρ = 0.8 and ηi,t ∼ TRN(0, σ2
c , c − ρci,t−1 − (1 − ρ) c+c

2
, c − ρci,t−1 − (1 − ρ) c+c

2
). TRN

denotes a truncated normal distribution. Its arguments are, in order, the mean and the variance

10In examples where we have found multiplicity, the algorithm that we use elsewhere in the paper appears to
consistently pick out an equilibrium that is the limit of the equilibrium in the early periods of a finite horizon
game as the number of periods grows.
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of the untruncated distribution, and the lower and upper truncation points. σc = $0.025.

Three features of this parameterization are worth highlighting. First, marginal costs are

restricted to a narrow range (diverging by less than 0.32% from mean value) and the probability

that a firm will switch from a relatively high cost to a relatively low cost across periods is quite

high.11 Therefore, no signal should affect a rival’s posterior belief about a firm’s next period

marginal cost very much. These choices are deliberate, as, first, we want to emphasize that

we find large effects of signaling on prices when the supply-side differs only slightly from what

would be assumed in a CI analysis, and, second, as we will show, the support of marginal costs

has to be relatively constrained for us to be able to find a separating equilibrium. Second,

the demand parameters imply high margins and limited substitution to the outside good in

both static and dynamic equilibria. We will also discuss how these features contribute to the

existence of a fully separating equilibrium with large price effects. Finally, we are assuming

that the firms are (ex-ante) symmetric. Later examples will analyze what happens when we

allow for some asymmetries.

Equilibrium Outcomes and Strategies. Table 1 shows expected price levels, the standard

deviation of prices and various welfare measures when we simulate data using equilibrium

strategies in different periods of the finite horizon game. For comparison, expected joint-profit

maximizing prices and static Nash equilibrium prices under CI (given average costs) are $45.20

and $22.62, with small standard deviations ($0.007 and $0.011). Signaling MPBE prices are

higher and significantly more volatile than Nash prices when the game is more than a couple

of periods from the end, but they are always much lower than joint profit-maximizing prices.

We now describe the strategies that result in these outcomes.

Figure 1(a) shows four static BNE period T pricing functions for firm 2, for different values

of firm 1’s period T − 1 marginal cost (c1,T−1), assuming that both firms know/believe that

c2,T−1 = $8. Firm 2’s price increases with c1,T−1 as firm 1’s expected period T price rises with

c1,T−1. However, the variation in firm 1’s prior cost affects firm 2’s price by less than one

cent, and, averaging across all possible cost realizations, average prices and welfare are almost

identical to outcomes with CI.12 Therefore the existence of asymmetric information alone (i.e.,

11For example, the probability that a firm with the highest marginal cost has a cost in the lower half of the
support in the next period is 0.32.

12Expected producer and consumer surplus differ by less than $0.0001 across these models.
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Figure 1: Period T and T − 1 Pricing Strategies in the Finite Horizon, Continuous Type
Signaling Game
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Table 1: Equilibrium Prices and Welfare in the Duopoly Game

Expected Welfare Measures
Per Market Size Unit

Nature of Mean Std. Dev. Cons. Producer Total
Period Equilibrium Price Price Surplus Surplus Welfare
T-24 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-13 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-10 MPBE $24.75 $0.47 $30.92 $15.95 $46.87
T-7 MPBE $24.68 $0.45 $30.98 $15.89 $46.88
T-4 MPBE $24.25 $0.36 $31.40 $15.51 $46.91
T-2 MPBE $23.38 $0.17 $32.23 $14.74 $46.97
T-1 MPBE $22.88 $0.06 $32.71 $14.29 $47.00
T BNE $22.62 $0.01 $32.96 $14.05 $47.01

Infinite Stationary $24.76 $0.47 $30.91 $15.96 $46.87
Horizon MPBE

Notes: except for the last row, all prices are based on equilibrium strategies in a
finite horizon model with parameters described in the text. The last line reports
results for the stationary strategies in an infinite horizon model with the same pa-
rameters.

when not combined with some form of dynamics) does not generate interesting effects given

our parameters.

There is an incentive to signal in period T − 1 because a firm’s price can affect its rival’s

price in period T . Assuming both firms’ period T − 2 costs were $8, Figure 1(b) shows firm 1’s

signaling pricing function (found by solving the differential equation (1) given the boundary

condition (2)) if it expected that firm 2 was using its period T strategy. We reproduce the

period T pricing strategy for comparison. The pricing functions intersect for c1,T−1 = $8, but

signaling may lead firm 1 to raise its price by as much as 20 cents for higher costs. At first

blush, this large increase may seem surprising given that we know the effect of any signal on firm

2’s T price will be small. However, the assumed demand implies that firm 1’s profit function,

shown in Figure 2, is sufficiently flat that, if c1,T−1 = $8.025, its expected lost period T − 1

profit from using a signaling price of $22.76, rather than the statically optimal period T − 1

price of $22.61, is only $0.00070 per consumer, which is less than the (discounted) expected

period T profit gain of $0.00079 from being viewed as a firm with c1,T−1 = $8.025 rather than

c1,T−1 = $8.0001, the cost firm 2 would infer if firm 1 set a price of $22.61.

Figure 1(b) assumed that firm 2 was using its period T strategy with no signaling. Figure
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Figure 2: Expected T − 1 Period Profit Function: c1,T−1 = $8.025 and c1,T−2 = c2,T−2 = $8
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Notes: the profit function is drawn “per potential consumer” for a firm assumed to have a marginal

cost of $8.025, and with a rival using the static BNE pricing strategy when both firms’ previous period

marginal costs were $8.

1(c) shows firm 2’s best signaling response when firm 1 uses the strategy in Figure 1(b) (repeated

in the new figure as a comparison). As firm 1’s expected price has increased, firm 2’s static

best response pricing function shifts upwards. Of course, this positive feedback will cause firm

1’s pricing function to rise as well. Figure 1(d) shows the equilibrium period T − 1 pricing

functions. The increase in the slope and the dispersion of the pricing functions means that

period T − 1 prices will be higher and more volatile than period T prices.

The increased vertical spread also means that period T − 1 prices are more sensitive to

perceived period T −2 costs which increases period T −2 signaling incentives. Figure 3 shows a

selection of equilibrium pricing functions for period T −2 and earlier periods. The pricing func-

tions become more spread out and the level of prices increases, although by successively smaller

amounts, in earlier periods. Further back than period T − 15 equilibrium pricing functions and

average prices barely change. The figure also plots the stationary pricing strategies that we

compute for an infinite horizon game with the same parameters. They are indistinguishable

from the strategies in the early periods of the finite horizon game.13

13We have consistently found this convergence except in cases when the conditions required for separation
are violated or are very close to being violated in which case the infinite horizon strategies may not converge.
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Figure 3: Equilibrium Pricing Functions for Firm 1 in the Infinite Horizon Game and Various
Periods of the Finite Horizon Game.
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Notes: all functions drawn assuming that firm 1’s perceived marginal cost in the previous period was

$8.

3.2 Cost Assumptions, Signaling Incentives and the Existence of
Separating Equilibria.

As noted, signaling incentives in the previous example are relatively weak because of the limited

correlation in marginal costs across periods. Increasing the AR(1) parameter or c − c, or

reducing σc tend to increase signaling incentives and raise equilibrium prices. However, when

price increases are too large, the conditions for characterizing best responses can fail and we

may not be able to find a separating equilibrium.

The first six columns of Table 2 show, for different periods, the baseline average prices and

average prices when signaling incentives are strengthened. Small parameter changes result in

higher equilibrium prices, but larger changes result in the failure of our algorithm as we cannot

define best response pricing functions. Pooling or partial pooling equilibria may exist, but we

do not know how to characterize them. Appendix B.1.2 uses a two-type example to examine
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Table 2: Equilibrium Pricing in a Finite Horizon Game with Alternative Cost Specifications

Reduce Expand Range

Baseline Expand Range Std. Deviation & Increase Std. Dev.

[c, c] ($) [8,8.05] [8,8.075] [8,8.15] [8,8.3] [8,8.05] [8,8.05] [8,8.50]
σc ($) 0.025 0.025 0.025 0.025 0.02 0.01 0.25

T-24 $24.76 $26.51 - - $25.71 - $24.90
T-10 $24.75 $26.59 - - $25.70 - $24.89
T-9 $24.74 $26.59 fails - $25.69 fails $24.89
T-8 $24.72 $26.57 $28.48 - $25.66 $28.58 $24.89
T-7 $24.68 $26.50 $29.17 fails $25.60 $28.76 $24.87
T-6 $24.61 $26.37 $29.35 $30.40 $25.49 $28.65 $24.85
T-1 $22.88 $23.05 $23.42 $23.93 $22.93 $23.05 $23.55
T $22.62 $22.63 $22.67 $22.74 $22.62 $22.62 $22.84

∞-Horizon $24.76 $26.50 fails fails $25.71 fails $24.90

Notes: values in all but the last line are based on the duopoly, continuous type, finite horizon model with
demand parameters described in the text (cost parameters indicated in the table). The last line reports
results for the stationary strategies in the infinite horizon model with the same parameters. “Fails” indi-
cates that the belief monotonicity or single-crossing conditions fail so that we cannot calculate signaling
best response pricing functions.

the failure of the conditions, including belief monotonicity, in more detail.

However, as illustrated in the final column, we can sustain separating equilibria if we increase

c− c and increase σc simultaneously.14 This pattern will be relevant for our application, where

we will estimate that both c− c and σc are higher than in our baseline example.

3.3 Equilibrium Outcomes with Different Numbers of Firms, Asym-
metries and Alternative Discount Factors.

A firm’s strategic incentive to raise its current price in order to raise its rivals’ future prices

may be dulled when there are more firms because (i) price increases may be more costly as the

firm’s residual demand becomes more elastic, and (ii) an individual firm’s signal will tend to

have a smaller effect on the price that any other firm sets in the next period. We therefore

consider how the magnitude of price differences between our model and a static CI model vary

with the number of firms.

We use the two-type model so that we can consider up to seven, ex-ante symmetric single-

product firms, but we stay as close as possible to our previous example by assuming the same

14In the final column the probability that a cost goes from one extreme of the support to the opposite half of
the support is 0.32, which is the same as in the baseline case.
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demand system and that each firm’s marginal cost is either 8 or 8.05 with a probability of

0.3 of the marginal cost changing between periods. We consider 5 alternative values of the

discount factor, {0.5, 0.8, 0.9, 0.95, 0.99}, to investigate whether effects are sensitive to assuming

β = 0.99. As we identified some examples of multiple signaling equilibria in the infinite horizon

two-type model, we present results from a finite horizon model where we solve backwards for

additional periods until the strategies converge.15

Figure 4(a) shows average prices predicted by our signaling model and a CI model where the

finite horizon assumption implies that firms will always set static Nash prices. Static pricing is

always optimal when N = 1 so all specifications predict identical prices. When N = 2, average

prices are 15.3% above CI Nash levels when β = 0.99 and 9.4% higher when β = 0.8, so it is

possible to generate substantial effects even with a discount factor consistent with annual or

even less frequent pricing. As N increases, signaling raises average prices by smaller, but not

necessarily trivial, percentages: for example, when N = 4 and β = 0.95, signaling prices are

2% higher than CI prices.16

We also use a two-type example to examine whether symmetry is necessary to produce large

effects using a three-firm specification. We continue to assume that each firm’s marginal cost

is either 8 or 8.05. We assume nested logit demand with nesting and price coefficients of 0.25

and -0.1, with firm-specific indirect utility intercepts calibrated so that, with average marginal

costs for each firm and static CI Nash prices, the three firms have specific shares of sales and

97.5% of potential consumers make a purchase.17 β = 0.99.

Figure 4(b) reports the increase in the share-weighted average price relative to CI Nash,

with the circle areas indicating the magnitudes that are also written in the figure, where the

share of the largest firm and the split of the shares of the other firms are represented on the axes.

The price increase in the symmetric 3-firm model is 4.6% (bottom-left circle). The percentage

increases are largest when the industry is close to an effective duopoly, but they are significant

15Convergence is defined as a maximum difference in the pricing strategies across periods of less than 1e-4.
In all cases we go back at least 30 periods, by which point the convergence criterion has been reached for most
of our specifications.

16We have also calculated average joint-profit maximizing prices under CI, and the critical discount factor
that would sustain collusion with Nash reversion trigger strategies if the game had an infinite horizon. For
example, with N = 4, joint-profit maximizing prices of over 49 could be sustained if β > 0.62.

17The final assumption implies limited diversion to the outside good, where diversion is defined by the
proportion of lost demand that goes to the outside good when the price of good rises. As our earlier discussion
suggests, limited diversion to the outside good is necessary for us to find any separating equilibrium for the
most extreme asymmetries that we consider.
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Figure 4: Equilibrium Average Prices with Different Numbers of Firms and Alternative Dis-
count Factors in a Two-Type Model, and the Effect of Demand-Side Asymmetries with Three
Firms.

(a) Average Prices with Symmetric Single-Product Firms.

(b) Increase in Share-Weighted Average Prices Relative to CI Nash in a Three Firm Model with
Demand Asymmetries.
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in other cases as well. For example, when the CI shares of total sales are {0.68, 0.24, 0.08},

the average price is 5.3% higher than the average CI Nash price.18

3.4 Mergers and Merger Analysis.

Signaling may matter in any application where a small number of oligopolists set prices, but we

focus on the implications for horizontal mergers because static CI Nash assumptions underpin

almost all of the quantitative predictions that agencies conduct.

Figure 5(a) uses the same specifications as Figure 4(a) but reports the increase in average

firm prices after an unanticipated merger of two firms which eliminates a product without

generating synergies. As there is no signaling in monopoly, a 2-to-1 merger increases prices

more under CI Nash and with lower discount factors. However, price increases are larger

with signaling than with CI Nash when the discount factor is large enough for the remaining

mergers.19

It is more common to assume that a merged firm will continue to sell both products after a

merger, and that synergies are possible. In order to maintain the tractable single unobserved

state variable-single signal structure of our model, we will assume that, post-merger, the merged

firm will have exactly the same marginal cost for both products in each period and it will have

to set a single price. The cost evolution process will be unaffected, even if the level of marginal

cost falls for the merging firm. To make this assumption plausible, we will only consider mergers

involving products with the same indirect utility intercepts.

Figure 5(b) considers the effect of mergers in asymmetric 4-firm industries. The pre-merger

model extends the example used for Figure 4(b) to an additional firm. The x-axis indicates the

combined market share of the two merging firms (under CI Nash) before the merger (so 0.5

means that each firm makes 25% of sales), while the y-axis shows the split of the remaining CI

sales between the two remaining firms. The price increases shown in the figure are the average

price increase (i.e., the increase in the share-weighted average price across the four products)

when the merged parties benefit from a marginal cost synergy which would, at average marginal

18In this example, it is the firm with the second largest share that increases its average price the most, in
both dollar and percentage terms (10.0%).

19In these examples, the absolute price increase is always larger with signaling, but the proportional price
increasea can be smaller because pre-merger signaling prices are higher. This fact also explains why price
increases in 6-to-5 and 7-to-6 mergers are not monotonic in the discount factor.
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Figure 5: Effects of an Unanticipated Merger in a Two-Type Model.

(a) Increases in Average Prices with Symmetric Single-Product Firms Before and After the Merger.

(b) Increases in Average Prices in a Four Firm Model where Merged Firm Has Two Products after
the Merger and Benefits from the CI CMCR. Missing values indicate that a separating equilibrium
was not found before or after the merger.
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costs, prevent any post-merger price increase if firms played CI Nash. This level of synergy is

typically known as the Compensating Marginal Cost Reduction (CMCR). Any price increase

would therefore be a surprise to an agency that, based on a CI model, would expect the merger

to be competitively neutral.

A merger in a symmetric four-firm industry generates a surprise price increase of 3.13%.

Configurations where the rest of the market is dominated by a single firm can produce much

larger price increases. This reflects important differences in economics of mergers with CI and

with signaling. As shown in recent work by Nocke and Whinston (2020), CMCRs will typically

depend on the market shares of the merging firms, but not the concentration of the rest of the

market.20 In contrast, with signaling, non-merging rivals, especially large ones, have incentives

to raise prices when, after a merger, the prices of the merged firm will be more sensitive to the

prices that the rivals set (even if, hypothetically, the average level of the merged firm’s price

was to be unchanged). Of course, the merged firm may respond to rivals’ price increases with

price increases of its own, creating a positive feedback which leads to substantial price effects.

For example, if pre-merger sale shares are {0.325,0.325,0.33, 0.02} the merged firm, which

benefits from the synergy, raises its average price by 10.6%, and the large rival increases its

average price by 12.9% (the small rival’s average price increases by 1%). A static CI Nash

model where the static best response functions have slopes less than one (and usually slopes

are significantly less than one) can never predict that a rival will increase its prices by more

than the merging firm whatever level of synergy is assumed. On the other hand, this can often

happen in our model.

20The result is exact for multinomial logit demand, but Nocke and Whinston show that the result holds
approximately in the random coefficients nested logit model considered by MW in their analysis of beer, which
is, of course, closely related to our empirical application.
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Table 3: Post-Merger Prices and Required Synergies in an Infinite Horizon Continuous-Type
Model. Firms are symmetric before the merger, and the merged firm sells two products after
the merger.

4-to-3 Merger 3-to-2 Merger

Pre-Merger Average Prices $18.25 $19.79

Post-Merger Average Price of Merged $21.53 (+18.0%) $27.18 (+37.3%)
Firm if No Marginal Cost Synergy

Post-Merger Average Price of Non- $19.12 (+4.8%) $23.59 (+19.2%)
Merging Firm if No Marginal Cost Synergy

CI CMCR $4.95 $10.08

Merged’s Firm Post-Merger Average Price with $18.85 (+3.2%) $23.00 (+16.2%)
CI CMCR Synergy in Signaling Equilibrium

Marginal Cost Reduction Required to Keep Merged $5.76 $19.94
Firm’s Average Price from Rising in Signaling Equilibrium

Notes: parameterization described in the text. Note that the CI CMCR is the marginal cost reduction that an
analyst would compute using the true demand system, observed (signaling) pre-merger signaling prices and a
CI Nash assumption.

These effects can mean that the marginal cost reduction that would actually be required to

prevent a price increase may need to be substantially higher than the CI CMCR, and this is

true even when firms are symmetric before the merger. We illustrate this using a final example

where we extend our infinite horizon continuous-type model to allow up to four firms, with the

same assumptions on demand and marginal costs. Firms are symmetric before the merger, but

after the merger the merged firm has two products. Table 3 shows the price effects of 4-to-3

and 3-to-2 mergers. With no synergy, either merger leads to both the merging firms and the

non-merging firms increasing their prices substantially. To prevent the merged firm’s price from

rising above its average pre-merger level, very large synergies are required. In fact for a 3-to-2

merger, the merged firm’s average marginal cost would have to fall from $8.025 to -$11.915.

3.5 Additional Examples.

Appendices B.1.1 and B.2 describe additional examples. Appendix B.1.1 uses the two-type

duopoly model to examine the relationship between the existence of separating equilibria, the

effects of signaling on prices, the serial correlation of costs and the extent to which, when a
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firm’s price rises, demand is diverted to the outside good. Price increases above static CI Nash

can be very large (an increase of 45% in one case) when there is limited diversion to the outside

good even when there is moderate serial correlation in costs (e.g., Pr(ci,t = ci,t−1)=0.75). On

the other hand, when there is significant diversion to the outside good, separating equilibria

can only be supported when there is lower serial correlation in costs, and equilibrium price

increases are smaller.

Appendix B.2 present three simple duopoly examples where marginal costs are fixed and

known, but firms have private information about some other element of their payoff function

(a feature of demand, the weight managers place on revenues rather than profits, or the weight

they place on the profits of rivals). Signaling can raise prices significantly above CI Nash levels

in each case. Therefore, while our empirical application will assume that it is marginal costs

that are privately known, one would still get substantial price effects if it is a different part of

firms’ profit functions that are opaque to rivals.

4 Empirical Application: The MillerCoors Joint Ven-

ture

In this section, we test whether our model can explain changes in price levels, and price dynamics

in the U.S. beer industry around the time of the 2008 MC JV, which was an effective merger of

the second- and third-largest US brewers.21 We structure our discussion by first discussing our

motivation for looking at this setting, before describing the calibration of our model, and a CI

alternative, using pre-JV data. We compare what these models predict should have happened

to prices after the JV with what we observe in the data. Discussion of the data, which is

the same as used by MW, demand estimation and additional analysis of collusive models that

assume CI are contained in Appendix D in order to keep the text appropriately focused on our

model.

21Anheuser-Busch was purchased by InBev in 2008. Throughout this section and the Appendices, we will use
AB to refer to Anheuser-Busch before 2008 and Anheuser-Busch InBev afterwards, and we will assume that
this transaction had no effect on AB’s pricing incentives.
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4.1 Motivation.

There are three broad reasons why we choose to consider the MC JV even though our model

could be applied to other transactions affecting differentiated product markets.22

First, features of the transaction and the industry mean that the assumptions that we

make for tractability are relatively plausible. Immediately prior to the JV, the leading brands

of Miller and Coors had very similar market shares, at least at a national level, and sold at

very similar retail prices (Appendix D.3). The prices of different major brands sold by the

same brewer (e.g., Budweiser and Bud Light) tend to move together (Appendix D.6). These

facts make us comfortable with assuming that Miller and Coors are symmetric before the JV

and that each pre-JV firm sets a single price. After the JV, MC produced Miller and Coors

brands, including Miller Lite (ML) and Coors Lite (CL), in the same breweries, so that their

production and distribution costs should be almost identical and move together, and in the

data ML and CL prices become more correlated (Figure 6(a)-(c) below, and Appendix D.6).

These facts are consistent with assuming that MC has a single marginal cost and a single

price after the JV. The “subpremium” and “premium” segments of the beer industry were also

dominated by three domestic firms (two after the JV) whereas import and domestic craft beers

are sold at significantly higher prices (Appendix D.3). There is no evidence that post-JV retail

price increases for the domestic brands caused significant substitution to these higher-priced

alternatives (Appendices D.3 and D.5). We therefore believe that a model that only has the

three large domestic brewers provides a reasonable, if imperfect, approximation of the market

before the JV.

Second, a review of price data suggests that there are two features that we would like a

model to explain. The first feature is the increase in the prices of domestic brands, including

those produced by non-party AB, after the JV despite MC realizing marginal cost synergies

(Ashenfelter, Hosken, and Weinberg (2015)). Regressions in Appendix D.4 quantify these

price increases to lie between 40 cents and a dollar per 12-pack, or 3%-6%, depending on

the specification. We will proceed assuming that MW’s interpretation that the relative price

increase was a causal anticompetitive effect of the JV is correct.23 As discussed in Section 3.4,

22In ongoing work we are also applying the model to analysis of firms that choose capacities in the presence
of asymmetric information.

23This interpretation is complicated by how the Great Recession may have affected demand and a fall in the
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Figure 6: Average Prices and Marginal Cost Residuals for Flagship Brand 12-Packs in Three
Markets. Panels (a)-(c) show nominal weekly average prices for 48 months around the JV,
excluding sales at temporary price reductions. See Appendix D.7 for alternative versions.
Panels (d)-(f) show the monthly marginal cost residuals implied by MW’s RCNL-1 demand
and supply model. MW exclude the 12 months following consummation of the merger.
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our model can predict that a large rival will increase prices as much as, or more than, the

merging parties.

The second feature is that average retail prices are quite volatile both before and after the

JV. This is illustrated in Figure 6(a)-(c) which show monthly average nominal retail prices

(calculated as dollar sales divided by units sold) for Bud Light (BL), ML and CL 12-packs in

two local markets and nationally.24 We exclude sales at prices that the IRI data indicate as

temporary price reductions from our calculations, as these may create volatility that does not

reflect changes in wholesale prices, although it is also possible that some price reductions and

other types of promotion are funded by brewers or their distributors. Appendix D.7 shows that

volatility remains when prices are calculated in different ways, including as the unweighted

average of prices across stores so that shifts in volumes across sample stores do not affect the

averages. Tacit collusion models either say nothing about price volatility, or when they are

extended to allow for asymmetries of information, they may predict that prices should be rigid

(Athey, Bagwell, and Sanchirico (2004)). On the other hand, relatively small variations in

an underlying firm state variable can lead to significant price volatility in our model. Figure

6(d)-(f) plots the marginal cost residuals, for the same products and markets, implied by MW’s

“RCNL-1” demand and supply estimates where the supply model assumes CI and includes a

conduct parameter after the JV. The implied marginal costs are volatile and serially correlated,

which will be a feature that will be embedded into our model.25

Third, existing explanations for why prices increased after the JV based on CI theories

of firm conduct can be shown to be inconsistent with the data. MW assume static CI Nash

pricing before the JV and estimate a post-JV conduct parameter, which allows for partial joint

profit-maximization by the domestic firms. MSW propose a more formal model of CI tacit

collusion where, each year in each local market, a domestic price leader suggests an incentive-

compatible supermarkup that the domestic firms should add to CI Nash prices. They also

estimate a parameter, that is intended to capture factors such as the time preferences of the

CPI-U deflator, from 220.0 in July 2008 to 210.2 in December 2008, at exactly the same time that the merger
was being consummated.

24We present nominal prices so that the picture is not distorted by the drop in the CPI deflator (footnote
23). When one examines nominal prices, volatility is arguably a more striking feature of the price series than
the post-JV price increase.

25The ML and CL residuals become very similar in Los Angeles and Seattle after the JV, which provides
additional support for our post-JV modeling assumption.
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domestic firms, that rationalizes the observed price increases. While MW’s and MSW’s extra

parameters are exactly identified by how AB increases its prices, assuming that the JV did not

affect AB’s marginal costs, we test MW’s and MSW’s assumptions using additional exclusion

restrictions and including additional controls in Appendix D.9. We reject MW’s assumption

of CI Nash pricing before the JV in many specifications, as well as MSW’s assumption of a

common domestic supermarkup, while not necessarily rejecting the hypothesis that domestic

brewer conduct was the same before and after the JV. While these results do not imply that no

CI model can explain the data, it does suggest that alternative theories, including ours, deserve

serious consideration.26

Our empirical approach is different to the one used by MW or MSW. They identify conduct

or time preference parameters that rationalize the observed post-JV increase in prices, and

do not seek to empirically test or otherwise validate their assumption that domestic brewers

collude.27 In contrast, we calibrate our model using only pre-JV data and then examine what

our model predicts about the effects of the JV on price levels and price dynamics without

estimating additional parameters.

4.2 Calibration of the Dynamic Asymmetric Information Model.

We calibrate an infinite horizon, continuous marginal cost three-firm/product version of our

model using pre-JV data, and then compare its predictions with post-JV data. For comparison

purposes, we also calibrate a CI model that assumes that firms use static Nash pricing strategies

using the same parameters and moments. We say “calibration”, even though we estimate five

cost parameters, because of the strong assumptions we make to limit the computational burden.

The most important simplification is that our calibration will treat data from different markets

as data from independent repetitions of the same game, rather than reflecting markets with

different demand and cost primitives.

26One can interpret folk theorems as implying that some tacit collusion model that assumes CI is likely to
match the data.

27MW and MSW refer to excerpts from AB’s documents published by the DOJ in various complaints that
can be read as suggesting collusive behavior. For example, the DOJ’s Complaint enjoining AB’s acquisition of
Grupo Modelo highlighted that AB had a Conduct Plan for setting prices which aimed to “dictate consistent
and transparent competitive response” and to yield the “highest level of followership”. However, these quotes
are not inconsistent with domestic brewers using prices to signal information about either their costs or their
future competitive intentions, and they do not show that Nash reversion, “tit-for-tat”, or one of the other types
of punishment that tacit collusive models assume, are being threatened.
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4.2.1 Products.

We model the pricing of three brands. We label these brands as BL, ML and CL, and will

estimate the cost parameters to match the observed price dynamics of these flagship products.

However, Appendix D.6 shows that the prices of brands in the same portfolio (e.g., Budweiser

and BL) are highly correlated, and one can also view the brands as representing the portfolios

of AB, Miller and Coors. Products of other brewers, including imports and craft beers, are

included in the outside good.28 We will assume that ML and CL are symmetric before the JV,

as we will have to assume that MC sets the same price for both products after the JV.

4.2.2 Demand.

We assume static, time-invariant nested logit demand, with the three brands in the same nest.

The parameters are the nesting and price parameters, and the mean utilities (excluding the

effect of price) of BL and ML/CL. Our baseline parameters are chosen so that, at average

real prices in the pre-JV data, the average own price elasticity is -3, the market shares of

the three products are 28% for BL and 14% each for ML/CL and, on average, if the price of

one brand increased, 85% of the demand that it loses would go to the other brands with the

remainder to the outside good.29 See Appendix D.8 for empirical estimates of demand that

are consistent with these assumptions. When we use weekly data on 6/12/18/24/30-packs and

exclude temporary price reductions, the pre-JV cross-market average prices are $10.09 for BL

and $9.95 for ML/CL, and the implied nesting and price parameters are 0.772 and −0.098, and

the BL and ML/CL mean utilities are 1.044 and 0.863 respectively.

4.2.3 Marginal Costs.

We assume that the marginal costs of product i, ci,t, lie on the interval [ci, ci + c′], where

we estimate cBL, cML/CL and c′. ci,t evolves according to an AR(1) process with truncated

innovations

ci,t = ρci,t−1 + (1− ρ)
ci + ci + c′

2
+ ηi,t (4)

28An earlier version estimated a model that included imports as a non-signaling fringe. The calibrated model
predicted that, after the JV, they would raise their prices by around 2 cents.

29These assumed shares overstate the share of BL relative to ML and CL, but understate the share of AB,
relative to Miller and Coors, in the beer market and the light beer segment.
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where ηi,t ∼ TRN(0, σ2
c , ci−ρci,t−1−(1−ρ)

ci+ci+c
′

2
, ci+c

′−ρci,t−1−(1−ρ)
ci+ci+c

′

2
) and σc is the

standard deviation of the untruncated innovation distribution. The fit of the model improves

only slightly if we allow ρ, σc and c′ to vary across firms.

4.2.4 Objective Function, Matched Statistics and Identification.

The cost parameters are estimated using indirect inference (Smith (2008)). For a given value

of the cost parameters, we solve the model (see Appendix A.2 for the method) and simulate a

time-series of data to calculate six statistics/regression coefficients that we match to ones from

the data that we describe below. The estimation problem is

θ̂ = arg min
θ
g(θ)′Wg(θ)

where g(θ) is a vector where each element k has the form gk = 1
M

∑
m τ

data
k,m − τ̂k(θ) where τ datak,m

is a statistic estimated using the actual data and τ̂k(θ) is the equivalent statistic estimated

using simulated data from the model solved using parameters θ. W is a weighting matrix. The

reported results use an identity weighting matrix, although the choice of W has little effect on

the parameters as we match all of the statistics almost exactly. The objective function is mini-

mized using fminsearch in MATLAB (version 2018a). Standard errors are calculated treating

different markets before the JV as independent observations on the same game. Estimation

takes between 12 and 24 hours.30

For each geographic market, we calculate six statistics using data from January 2001 to the

announcement of the JV in October 2007.31 Our preferred specification uses weekly data and

the five most common pack sizes (6, 12, 18, 24 and 30-packs).32 Market-week-brand-size average

real prices per 12-pack equivalent are calculated excluding temporary store price reductions,

and using only market-weeks where we observe more than five stores.33 The first two statistics

that we match are the (unweighted) average prices for BL and ML across pack sizes and weeks.

30Computationally light two-step approaches, which are often used to estimate dynamic games, cannot be
used because they require that all serially-correlated state variables, which in our setting would include beliefs,
are observed by the researcher.

31MW use data from 2005 when estimating demand because they need to match sales data to data on market
demographics. We use a longer sample as we do not include demographics in our estimation of the supply-side.

32Our model does not have different pack sizes, market heterogeneity, varying sets of stores or time trends,
so the regressions using simulated data do not control for these factors.

33See Appendix D for a discussion of the sample selection.
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The third statistic is the interquartile range (IQR) of prices for BL. This is calculated as the

IQR of the residuals for each market from a regression where, pooling markets, we regress the

week-market-size prices of BL products on dummies for the specific set of stores observed in

the market-week (interacted with pack size) and week-size fixed effects in order to control for

fixed retail price differences across stores and any national promotions. The remaining statistics

are coefficients from market-brand-specific regressions of market-week-brand-size prices on the

lagged prices of all three brands. Specifically we use the averages of ρML,ML and ρCL,CL, ρBL,CL

and ρBL,ML, and ρML,CL and ρCL,ML, where ρi,j is the coefficient on the lagged price of brand j

when the dependent variable is the price of brand i. These AR(1) regressions include dummies

for the exact set of stores observed, interacted with pack size, and a linear time trend.

Assuming that the equilibrium is unique, the intuition for identification is straightforward.34

Given the assumed demand parameters and the observed price levels, the mark-ups implied by

the model will identify the lower bounds on brand marginal costs. The AR(1) coefficients and

the dispersion of prices will identify the range of costs and the parameters of the cost innovation

process.35 We will compare additional statistics that we do not match during estimation to

understand the fit of the model.

To provide a sense of the AR(1) coefficients, Table 4 shows the coefficients from similar

regressions that pool data from all markets for four alternative samples. Panel (a) reports the

results for our preferred specification. The serial correlation parameters for a product’s own

price are between 0.41 and 0.46, while the cross-product correlations are positive but smaller.

If price reductions are included (panel (c)), serial correlations fall, which is consistent with sales

lasting one week and being proceeded and followed by higher regular prices. Serial correlation

is higher if we use only 12-packs (panel (b)). Panel (d) repeats (a) using monthly prices and

34The possibility that our game has multiple equilibria may create two issues for estimation. First, the
objective function may be hard to minimize if our solution algorithm jumps between different sections of the
equilibrium correspondence. In practice, we can match our moments almost exactly across many alternative
parameterizations. Second, another equilibrium supported by different parameters might give similar predictions
to the equilibrium that our algorithm finds. This is essentially a potential identification problem. Here we have
to rely on the fact that we have never found multiple equilibria in continuous-type games, although we suspect
that they may exist for some parameters.

35Larger cross-brand ρ coefficients imply stronger signaling effects, so that a smaller range of costs may be
required to generate the dispersion of prices in the data. Our experience is that we need to match average prices,
some measures of own-brand and cross-brand serial correlation, and some measure of either the dispersion of
prices or the variance of innovations in prices to identify the parameters. The exact combination of moments
used has little effect on the results.
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Table 4: Pre-JV AR(1) Price Regressions Using Flagship Market-Pack Size-Week or -Month
Data

(a) Week, Price Reductions Excluded, (b) Week, Price Reductions Excluded,
All Pack Sizes, Fixed Effects for Set of Stores 12 Packs Only, Fixed Effects for Set of Stores

(1) (2) (3) (1) (2) (3)
pBL,t pML,t pCL,t pBL,t pML,t pCL,t

pBL,t−1 0.451 0.056 0.043 pBL,t−1 0.489 0.071 0.028
(0.033) (0.017) (0.010) (0.032) (0.026) (0.018)

pML,t−1 0.030 0.409 0.016 pML,t−1 0.062 0.505 0.028
(0.011) (0.036) (0.014) (0.013) (0.038) (0.012)

pCL,t−1 0.027 0.021 0.461 pCL,t−1 0.004 0.016 0.549
(0.012) (0.015) (0.040) (0.012) (0.015) (0.043)

Observations 36,659 36,670 36,700 Observations 10,829 10,817 10,828
R-squared 0.979 0.972 0.978 R-squared 0.964 0.945 0.957
Mean Price ($) 10.08 9.95 9.94 Mean Price ($) 10.30 10.22 10.19
SD residuals ($) 0.184 0.221 0.197 SD residuals ($) 0.144 0.183 0.163

(c) Week, Price Reductions Included, (d) Month, Price Reductions Excluded,
All Pack Sizes, Fixed Effects for Set of Stores All Pack Sizes, Fixed Effects for Markets

(1) (2) (3) (1) (2) (3)
pBL,t pML,t pCL,t pBL,t pML,t pCL,t

pBL,t−1 0.287 0.036 0.020 pBL,t−1 0.646 0.097 0.091
(0.027) (0.013) (0.013) (0.025) (0.015) (0.012)

pML,t−1 0.045 0.322 0.010 pML,t−1 0.074 0.601 0.066
(0.009) (0.027) (0.012) (0.015) (0.027) (0.014)

pCL,t−1 -0.023 -0.049 0.267 pCL,t−1 0.100 0.097 0.682
(0.013) (0.020) (0.039) (0.010) (0.016) (0.025)

Observations 37,449 37,431 37,442 Observations 13,972 13,973 13,975
R-squared 0.939 0.941 0.942 R-squared 0.974 0.971 0.974
Mean Price 9.79 9.67 9.68 Mean Price 10.08 9.95 9.94
SD residuals 0.337 0.342 0.336 SD residuals 0.210 0.229 0.216

Notes: regressions also include time period*pack size interactions and use pack sizes containing volumes
equivalent to 6, 12, 18, 24 and 30 12 oz. containers. Data from January 2001 to the announcement of the JV.
Market or store fixed effects described in the label to each panel. Standard errors, clustered on the market,
are in parentheses. The SD residuals statistic is the standard deviation of the residuals from the regression.
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Figure 7: Estimated Pre-JV Price Dynamics and the Combined Market Shares of AB, Miller
and Coors.

Notes: The estimated univariate regression coefficients, with standard errors in parentheses, for panel

(a) are BL: 0.011 (0.226) + 0.558C3 (0.288), R2 = 0.080; ML : 0.044 (0.192) + 0.465C3 (0.245),

R2=0.077; CL : -0.025 (0.215) + 0.568C3 (0.278), R2=0.091; and for panel (b): -0.039 (0.046) +

0.120C3 (0.058), R2=0.088.

market, rather than group-of-store, fixed effects (equivalent regressions will be used in our

monthly data specification). In this case, the serial correlation parameters increase, but further

investigation reveals that this happens primarily due to the change in the fixed effects.36

While our calibration does not seek to match cross-market heterogeneity, we note that

the serial correlation coefficients show a pattern across markets that is consistent with our

model. Using data simulated from our model, we typically estimate higher serial correlation

parameters in price regressions when we change the parameters to induce larger signaling effects

on prices, by, for example, reducing diversion to the outside good. Given any type of logit or

nested logit preferences, diversion to other brands will tend to be lower when, as a group, the

signaling brands have a higher market share. Figure 7(a) shows scatter plots of the estimated

36We have estimated monthly regressions including set of store fixed effects and dropping market-months
where the set of stores changes within months. This causes the number of observations to drop dramatically:
for example, the number of observations in the BL regression falls to 2,806, and the estimated coefficient on pBLt−1

falls to 0.318. For some individual markets, there is not enough data to estimate serial correlation coefficients.
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Table 5: Parameter Estimates for Seven Specifications.

(1) (2) (3) (4) (5) (6) (7)
Model Signal Signal Signal Signal Signal Signal CI
Data Frequency Week Week Week Week Week Month Week
Sizes All 12 only All All All All All
Price Reductions Excl. Excl. Incl. Excl. Excl. Excl. Excl.
Mean Brand Price Elasticity -3 -3 -3 -2.5 -3.5 -3 -3
Mean Flagship Diversion 85% 85% 85% 90% 80% 85% 85%

Lower Bound Cost for BL $5.259 $5.278 $4.845 $4.248 $5.973 $4.616 $5.439
(cBL) (0.222) (0.048) (0.046) (0.043) (0.026) (0.127) (0.010)
L.B. Cost for ML/CL $6.426 $6.528 $5.984 $5.786 $6.874 $5.711 $6.631
(cML/CL) (0.094) (0.014) (0.022) (0.024) (0.017) (0.020) (0.058)

Width Cost Interval $0.600 $0.752 $1.246 $0.556 $0.672 $1.793 $0.672
(ci−ci) (0.043) (0.021) (0.018) (0.102) (0.026) (0.037) (0.097)
Cost AR(1) Parameter 1.178 0.939 0.850 1.222 0.959 0.742 1.088
(ρ) (0.028) (0.011) (0.026) (0.013) (0.012) (0.025) (0.038)
SD Cost Innovations $0.262 $0.278 $0.566 $0.260 $0.270 $0.400 $0.278
(σc) (0.031) (0.001) (0.050) (0.104) (0.026) (0.052) (0.086)

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. Standard errors in parentheses. The data
specifications using weekly data include group-of-store fixed effects when calculating the data statistics. For
the monthly specification, the regression using the data only include market fixed effects. Flagship diversion
refers to the proportion of lost demand that switches to the other two products when the price of one of the
product increases.

market-level serial correlation parameters for BL, ML and CL against the share of all beer sales

accounted for AB, Miller and Coors in 2007. Figure 7(b) shows a similar plot for the average

of the six cross-brand coefficients. In both cases there is a positive, and, using a regression

analysis, a statistically significant, relationship, consistent with our simulations.37

We also calibrate the cost-side parameters assuming that firms have CI (i.e., they know

each other’s marginal costs) and use static Nash pricing strategies. This is done using the same

procedure and moments that we use for the signaling model.

4.2.5 Parameter Estimates and Model Fit.

Table 5 reports the calibrated parameters for six signaling models, where different demand

parameters are assumed or different prices series are matched, and one CI specification. For

the signaling specifications, estimated marginal costs increase when demand is more elastic,

and the range of costs and the standard deviation of the innovations increase when we match

37We also find positive, statistically significant relationships when we look at individual cross-brand coeffi-
cients.
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Table 6: Model Fit for Three Specifications Using Weekly Data, Average Brand Price Elas-
ticity of -3 and Flagship Diversion of 85%

Data Freq. Week Week
Sizes All 12
Price Reductions Excl. Excl.

Data Sign. Model CI Model Data Sign. Model

Matched Moments
Mean pBL $10.09 $10.09 $10.09 $10.30 $10.30
Mean pML $9.96 $9.96 $9.96 $10.22 $10.22
Mean ρML,ML, ρCL,CL 0.402,0.413 0.408 0.407 0.468,0.450 0.444
Mean ρBL,ML, ρBL,CL 0.082,0.066 0.074 -0.000 0.102,0.056 0.076
Mean ρML,CL, ρCL,ML 0.051,0.036 0.046 0.005 0.065,0.026 0.035
IQR pBL $0.189 $0.189 $0.189 $0.185 $0.212

Unmatched Moments
Mean pCL $9.95 $9.97 $9.97 $10.20 $10.23
ρBL,BL 0.444 0.403 0.412 0.442 0.418
Mean ρML,BL, ρCL,BL 0.059,0.0.42 0.038 -0.002 0.065,0.040 0.038
SD of BL Res. $0.177 $0.107 $0.111 $0.136 $0.122
SD of ML/CL Res. $0.204,$0.189 $0.156 $0.139 $0.161,$0.149 $0.179
IQR pML, pCL $0.222,$0.210 $0.273 $0.250 $0.228,$0.206 $0.316
Skewness of BL Res. -0.361 -0.353 -0.005 -0.307 -0.314

ML/CL Res. -0.100,-0.329 -0.331 -0.004 -0.296,-0.201 -0.297

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. SD = standard deviation. Res. = residu-
als from the AR(1) regressions. For the data we report separate values for the statistics for ML and CL, but,
because the model assumes that ML and CL are symmetric, and so predicts identical statistics (ignoring
simulation error), we match the average of these values during estimation and report a single prediction.

data that contains temporary price reductions. The estimated marginal cost ranges are much

larger than in our examples, but the estimated σcs imply that the probability that a marginal

cost can go from high to low across periods is quite high.38 The CI specification in column

(7) uses the same demand and data as the signaling model in column (1). As the CI model

implies smaller average markups and does not tend to augment cost volatility, the marginal

cost estimates and the width of the cost interval increase.

The upper panel of Table 6 reports the fit of the moments that we match during the

calibration for the column (1), (2) and (7) specifications. The signaling models match all six

moments accurately, but the CI model predicts that the cross-brand ρs should be approximately

zero rather than positive. The lower part of the table reports moments that are not matched,

including the skewness of the innovations from the AR(1) regression which is unrelated to any

38For example, for the specification in column (1) the probability that a firm with marginal cost ci will have
a marginal cost in the lower half of the range in the next period is 0.24, similar to 0.32 in our baseline example.
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Table 7: Predicted Average Prices Before and After the MC JV For Signaling
Model

(1) (2) (3) (4) (5) (6)
Frequency Week Week Week Week Week Month
Sizes All 12 only All All All All
Price Reductions Excl. Excl. Incl. Excl. Excl. Excl.
Brand Elasticity -3 -3 -3 -2.5 -3.5 -3
Flagship Diversion 85% 85% 85% 90% 80% 85%

Pre-JV Mean Prices
BL $10.09 $10.30 $9.81 $10.09 $10.09 $10.09
ML/CL $9.96 $10.22 $9.68 $9.96 $9.96 $9.95
Assumed ML/CL Synergy -$1.18 -$1.20 -$1.14 -$1.50 -$0.94 -$1.17
Post-JV Mean Prices
BL $10.62

(+5.3%)
$10.90
(+5.7%)

$10.17
(+3.7%)

$10.98
(+8.7%)

$10.42
(+3.3%)

fails

ML/CL $10.48
(+5.2%)

$10.79
(+5.8%)

$10.02
(+3.5%)

$10.82
(+8.5%)

$10.27
(+3.1%)

fails

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. For the data we report
separate values for the statistics for ML and CL, but, because the model assumes that ML
and CL are symmetric, and so predicts identical statistics (ignoring simulation error), we
report a single prediction.

of the estimation moments. All of the models underpredict the standard deviation of price

equation residuals for BL, although the difference is smaller for the specification calibrated

using only 12-pack data. The signaling models match the skewness of the pricing residuals

accurately, but the CI model also fails to match this dimension of the data.

4.2.6 Predicted Effects of the JV.

Table 7 reports predicted prices when we resolve the six signaling models assuming that ML

and CL have the same marginal cost and are sold by a single firm at the same price. We assume

that MC benefits from a synergy that would have prevented average prices from rising if firms

set static CI Nash prices, as this appears consistent with the DOJ’s expectation, but the width

of the cost interval and the remaining parameters remain the same. The predicted price changes

in columns (1)-(5) are all within the estimated ranges of 40 cents to $1 or 3-6%.39 We cannot

find an equilibrium for the monthly data specification. In this case, the estimated parameters

39One might be concerned that our assumed discount factor of β = 0.99 is too low for weekly data. We have
recomputed the column (1) estimates assuming β = 0.998, implying an annual discount factor of around 0.9.
While a higher discount factor increases signaling incentives, the estimated parameters change to rationalize
pre-JV dynamics in such a way that the predicted post-JV prices are within 1 cent of those reported in Table
7.
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Figure 8: Bud Light Equilibrium Pricing Strategies (for estimates in column (1) of Table 5).

Notes: the strategies shown assume that cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (lower line) and

cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (upper line). Therefore, for each type of equilibrium, the

maximum range of BL’s prices spans from the lowest point on the bottom line to the highest point on

the upper line.

imply marginal costs are more persistent (the probability that a firm with the cost ci will have

a cost less than
ci+ci+c

′

2
is only 0.067) because, in this case, we are matching coefficients from

a regression that does not control for cross-store heterogeneity in retail prices, and signaling

incentives raise prices so high that the conditions for separation fail.

Figure 8 compares, using the column (1) parameters, BL’s equilibrium pricing strategies for

the static Bayesian Nash 3-firm model, the estimated signaling 3-firm model and the counter-

factual post-JV model. Signaling increases the level and the range of BL prices, which span

from the lowest point on the two BL pricing functions to the highest point, especially in the

counterfactual.

Table 8 compares the cross-market averages of the IQR and ρ parameter statistics before

and after the JV in the data, and the values predicted by the column (1) model. It also reports

the values predicted by the CI model when we assume that, after the JV, the firms use first-

order conditions with a “conduct parameter” of 0.15 on the profits of their rivals. This value

leads the CI model to predict the same average post-JV prices for AB and MC as the signaling

model.
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Table 8: Observed and Predicted Changes in Price Dynamics for Calibrated Signaling Model
(Table 5, col 1) and the Calibrated CI Model (Table 5, col 7) with a Conduct Parameter
(θ = 0.15) to Predict the Same Change in Average Prices.

Calibrated CI Model
Data Calibrated Signaling Model with Conduct

Pre-JV Post-JV Change Pre-JV Post-JV Change Pre-JV Post-JV Change

IQR of Prices

BL $0.189 $0.241 +0.052 $0.189 $0.368 +0.180 $0.188 $0.220 +0.032
ML $0.222 $0.256 +0.034 $0.273 $0.369 +0.096 $0.249 $0.216 -0.033
CL $0.210 $0.244 +0.034 $0.273 $0.369 +0.096 $0.249 $0.216 -0.033
AR(1) Regression Coefficients

ρBL,BL 0.444 0.524 +0.080 0.403 0.440 +0.037 0.412 0.409 -0.002
ρML,ML 0.402 0.483 +0.081 0.408 0.439 +0.031 0.407 0.413 +0.006
ρCL,CL 0.413 0.453 +0.040 0.408 0.439 +0.031 0.407 0.413 +0.006
ρBL,ML 0.082 0.092 +0.010 0.074 0.149 +0.068 -0.000 0.002 +0.003
ρBL,CL 0.066 0.095 +0.029 0.074 0.149 +0.068 -0.000 0.002 +0.003
ρML,BL 0.059 0.087 +0.028 0.046 0.154 +0.108 0.004 -0.000 -0.005
ρCL,BL 0.042 0.080 +0.038 0.046 0.154 +0.108 -0.002 -0.000 +0.002

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. The calculation of the statistics is explained
in Section 4.2.4. Pre-JV averages are calculated for 45 markets, and post-JV averages are calculated for 44 mar-
kets, as one market does not have at least 5 stores observed in consecutive weeks after the JV. The CI Model
simulations use the parameter estimates from Table 5, column 7, which assumes CI Nash pricing before the JV,
but that after the JV the firms use a conduct parameter of 0.15. These assumptions predict average BL and
ML prices of post-JV $10.62 and $10.46, which are almost identical to those predicted by the signaling model
for the same demand system.

The signaling model correctly predicts the sign of the changes in each of the reported

statistics (i.e., there is more variation in prices, and more own-brand and cross-brand serial

correlation), although it does not predict which statistic increases the most. We view the

fact that our model matches the qualitative changes in dynamics, as well as the increase in

average price levels, even though the parameters are calibrated using only pre-JV data, as an

encouraging result. On the other hand, the CI model, which was unable to match the cross-

brand ρs in the pre-JV data, predicts that the serial correlation parameters should not change

and that the IQRs of prices for MC and AB should change in opposite directions.

5 Conclusion

We have developed a model where oligopolists simultaneously use prices to signal private in-

formation that is relevant for their future pricing decisions. While the theoretical literature

identified more than thirty years ago that this type of behavior could raise prices, we provide
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the first attempt to quantify how large these effects might be, and we believe that we also

provide the first empirical analysis of a simultaneous signaling model. We find that even when

signals can only provide limited information about future values of firms’ state variables, effects

on equilibrium prices can be large, and that these effects could materially affect the analysis of

horizontal mergers, as well as other applications where pricing is important. Our application

shows that our model can explain observed increases in the level of domestic beer prices and

changes in price dynamics after the Miller-Coors joint venture without the need to appeal to

changes in the nature of equilibrium play. The model also provides a natural explanation for

period-to-period price volatility observed in both the beer data and data from other industries

where economists have suggested that firms act collusively (Ordover (2007)) even though stan-

dard theories of tacit collusion provide no explanation for why volatility should be observed.

Our theory is also consistent with how firms treat information about their marginal costs and

their margins as highly confidential. As we have shown, our analysis assumes that firms can

be viewed as choosing a single price each period and that demand is sufficiently inelastic that

a separating equilibrium will exist. Therefore, while we believe our analysis is useful for un-

derstanding deviations from Nash pricing in some industries, we recognize that further work is

needed to investigate what may happen when these assumptions are relaxed.

We have often been asked how our model and our empirical analysis relate to theories of

“coordinated effects” in merger analysis. There is no standard definition of coordinated effects:

the presentation in Ordover (2007) is focused on variants of tacit collusion models, but Baker

and Farrell (2020) and Farrell and Baker (2021) use a much broader definition which includes

both “purposive” theories of collusion and “non-purposive” theories, such as the non-collusive

CI Markov Perfect models of Maskin and Tirole (1988) which show that asynchronous price-

setting can lead to price levels and price dynamics that differ from simultaneous Nash. Our

work shows that small and plausible asymmetries of information can lead to similar patterns,

and this may be a more plausible explanation in industries where all firms are able to change

prices frequently. On a more technical level, asymmetric information can also be convenient

because it means that each firm chooses its price against a distribution of its rivals’ anticipated

prices. This feature of asymmetric information models has long been appreciated in the static

and dynamic literatures on discrete choice games (e.g., Seim (2006)), but the benefits also arise
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when choices are continuous.

Non-purposive theories suggest that agencies reviewing mergers, and courts, should be skep-

tical about relying on static CI Nash models to predict price effects in concentrated markets

even when there is no evidence of collusion in an industry prior to a transaction. They can

also explain why coordinated effects do not raise prices to joint-profit maximizing levels, an

outcome that models of tacit collusion will usually predict when firms are even moderately

patient, but which most economists believe does not happen in practice. However, future work

could valuably combine signaling and collusion into a single model, building on Kreps, Milgrom,

Roberts, and Wilson (1982), Athey and Bagwell (2008) and one of our examples in Appendix

B.2 which illustrates how signaling could greatly magnify the effect of any small incentive that

firms’ have to raise their rivals’ profits.
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APPENDICES TO “DYNAMIC OLIGOPOLY

PRICING WITH ASYMMETRIC INFORMATION:

IMPLICATIONS FOR HORIZONTAL MERGERS”

FOR ONLINE PUBLICATION

A Computational Algorithms

This Appendix describes the methods used to solve our model. We describe the continuous

type, finite horizon model in detail, before noting what changes in other cases. Our discussion

will assume that there are two ex-ante symmetric duopolists. When firms are asymmetric, all

of the operations need to be repeated for each firm.

A.1 Finite Horizon Model.

A.1.1 Preliminaries.

We specify discrete grids for the actual and perceived marginal costs of each firm, which will

be used to keep track of expected per-period profits, value functions and pricing strategies.

For example, when each firm’s marginal cost lies on [8, 8.05] and we use 8-point equally spaced

grids, the points are {8, 8.0071, 8.0143, 8.0214, 8.0286, 8.0357, 8.0429, 8.0500}.40 We use

interpolation and numerical integration to account for the fact that realized types will lie

between these isolated points. The discount factor is β = 0.99.

It is useful to define several functions that we will use below:

� Pi,t

(
ĉji,t−1, cj,t−1

)
is firm i’s pricing function in period t. This is a function of the

marginal cost that j believes that i had in the previous period, ĉji,t−1 (which, when j is

forming equilibrium beliefs, will reflect that cost that i signaled in the previous period).

It will also depend on the marginal cost that i believes that j had in the previous period,

but we solve the game assuming that j is using its equilibrium strategy, so that i assumes

that its perception of j ’s prior cost is correct, so we use the argument cj,t−1. The actual

price set will depend on ci,t, and, when we need to integrate over the values that pi,t may

40The examples reported in Section 3 use 12 gridpoints, although we have experimented with as many as 20
gridpoints in each dimension to make sure that this does not have a material effect on the reported results.
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take (e.g., to calculate expected profits) we will include ci,t as an explicit argument in the

function.

� πi(pi,t, pj,t, ci,t) is firm i’s one-period profit when it has marginal cost ci,t and sets price

pi,t, and its rival sets price pj,t. This function does not depend on t because demand is

assumed to be static and time-invariant.

� Vi,t

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
is the value function for firm i defined at the beginning of period

t, before firm types have evolved to their period t values. It reflects the expected payoffs

of firm i in period t and the discounted value of expected payoffs in future periods given

equilibrium play in both t and future periods. It depends on the true value of each firm’s

type in t − 1, and the rival’s perception of i’s t − 1 type (reflecting any deviation that i

made in t− 1). In the case of an 8-point grid, Vi,t is a 512x1 vector.

� Πi,t

(
ci,t, ĉ

j
i,t, pi,t, ĉ

j
i,t−1, cj,t−1

)
is the intermediate signaling payoff function of firm i when

it knows its current marginal cost ci,t, and is deciding what price to set. It does not

know the period t type of its rival, but it reflects the pricing function that i expects j to

use, Pj,t

(
cj,t−1, ĉ

j
i,t−1

)
. ĉji,t is the perception that j will have about i’s cost at the end of

period t. When the rival sets price Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
,

Πi,t

(
ci,t, ĉ

j
i,t, pi,t, ĉ

j
i,t−1, cjt−1

)
=

cj∫
cj

 πi

(
pi,t, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci,t

)
+

βVi,t+1

(
ci,t, ĉ

j
i,t, cj,t

)
ψj(cj,t|cj,t−1)dcj,t.

where we note that pi,t only enters through current profits, and ĉji,t only enters through

the discounted continuation value. In practice, our description will make up Πi,t into

two components: Πi,t = π̃i + Ṽi,t, where

π̃i

(
pi,t, Pj,t

(
cj,t−1, ĉ

j
i,t−1

)
, ci,t

)
=

cj∫
cj

πi

(
pi,t, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci,t

)
ψj(cj,t|cj,t−1)dcj,t
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and

Ṽi,t

(
ci,t, ĉ

j
i,t, cj,t−1

)
=

cj∫
cj

βVi,t+1

(
ci,t, ĉ

j
i,t, cj,t

)
ψj(cj,t|cj,t−1)dcj,t.

Given a set of fully separating pricing functions Pi,t

(
ĉji,t−1, cj,t−1

)
, the relationship be-

tween Π and V is that

Vi,t

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
=

ci∫
ci

Πi,t

(
ci,t, ci,t, Pi,t

(
ci,t, ĉ

j
i,t−1, cj,t−1

)
, ĉji,t−1, cj,t−1

)
ψi(ci,t|ci,t−1)dci,t

where we recognize that, in equilibrium, i’s period t pricing function will reveal its cost

to j, implying ĉji,t = ci,t.

A.1.2 Period T .

Assuming that play in period T − 1 was fully separating, we solve for BNE pricing strategies

for each possible combination of beliefs (on our grid) about period T − 1 marginal costs. A

strategy for each firm is an optimal price given the realized value of its own period T cost, given

the pricing strategy of the rival, its prior marginal cost and the rival’s belief about the firm’s

period T − 1 cost. Trapezoidal integration is used to integrate over the realized cost/price of

the rival using a discretized version of the pdf of each firm’s cost transition, and we solve for

the BNE prices using the implied first-order conditions (i.e., those associated with maximizing

static profits). With symmetric duopolists and 8-point grids, we find 512 equilibrium prices.

We use the equilibrium prices to calculate the beginning of period value function

Vi,T

(
ci,T−1, ĉ

j
i,T−1, cj,T−1

)
= ...

ci∫
ci

cj∫
cj

πi

(
P ∗i,T

(
ci,T , ĉ

j
i,T−1, cj,T−1

)
, P ∗j,T

(
cj,T , cj,T−1, ĉ

j
i,T−1

)
, ci,T

)
ψj(cj,T |cj,T−1)ψi(ci,T |ci,T−1)dcj,Tdci,T .

A.1.3 Period T − 1.

Firms choose prices in period T − 1 recognizing that their prices will affect rivals’ prices in

period T . We solve for period T − 1 strategies, assuming separating equilibrium pricing and
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interpretation of beliefs in period T − 2, so that each firm has a point belief about its rival’s

period T −2 marginal cost. We then use the following steps to compute equilibrium strategies.

Step 1. (a) Compute

Ṽi,T−1

(
ci,T−1, ĉ

j
i,T−1, cj,T−2

)
= β

cj∫
cj

Vi,T

(
ci,T−1, ĉ

j
i,T−1, cj,T−1

)
ψj(cj,T−1|cj,T−2)dcj,T−1.

Ṽi,T−1 is the expected continuation value (i.e., not including period T − 1 payoffs) for i when

it is setting its period T − 1 price, without knowing the period T − 1 realization of cj (but

knowing that, in equilibrium, it will be revealed by pj,T−1).

(b) Compute β
∂Ṽi,T−1

(
ci,T−1,ĉ

j
i,T−1,cj,T−2

)
∂ĉji,T−1

using numerical differences at each of the gridpoints

(one-sided as appropriate). This array provides us with a set of values for the numerator in

the differential equation (1). These derivatives do not depend on period T − 1 prices, so we

do not repeat this calculation as we look for equilibrium strategies.

(c) Verify belief monotonicity using these derivatives.

Step 2. We use the following iterative procedure to solve for equilibrium fully separating

prices.41 Use the BNE prices (i.e., those calculated in period T ) as initial starting values. Set

the iteration counter, iter = 0.

(a) Given the current guess of the strategy of firm j, Pj,T−1

(
cj,T−1, cj,T−2, ĉ

j
i,T−2

)
, which is

equal to the pricing functions solved for in the previous iteration, calculate
∂π̃i,T−1

(
pi,T−1,Pj,T−1

(
cj,T−2,ĉ

j
i,T−2

)
,ci,T−1

)
∂pi,T−1

for a grid of values

(
pi,T−1, ĉ

j
i,T−2, ci,T−1

)
where

π̃i,T−1

(
pi,T−1, Pj,T−1

(
cj,T−2, ĉ

j
i,T−2

)
, ci,T−1

)
=

cj∫
cj

πi

(
pi,T−1, Pj,T−1

(
cj,T−1, cj,T−2, ĉ

j
i,T−2

)
, ci,T−1

)
ψj(cj,T−1|cj,T−2)dcj,T−1

41We do not claim that this iterative procedure is computationally optimal, although it works reliably in
our examples. There are some parallels between our problem and the problem of solving for equilibrium
bid functions in asymmetric first-price auctions where both the lower and upper bounds of bid functions are
endogenous. Hubbard and Paarsch (2013) provide a discussion of the types of methods that are used for these
problems.
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i.e., the derivative of i’s expected profit with respect to its price, given that it does not know

what price j will charge because it does not know cj,T−1. The derivatives are evaluated on a

fine grid (steps of one cent) of prices.42 This vector will be used to calculate the denominator

in the differential equation (1).

For each

(
ĉji,T−2, cj,T−2

)
,

(b) Solve the lower boundary condition equation
∂π̃

(
p∗i,T−1,Pj,T−1

(
cj,T−1,cj,T−2,ĉ

j
i,T−2

)
,ci

)
∂pi,T−1

= 0 for

p∗i,T−1, using a cubic spline to interpolate the vector calculated in (a). This gives the static

best response price and the lowest price on i’s pricing function.

(c) Using this price as the initial point43, solve the differential equation, (1), to find i’s best

response signaling pricing function. This is done using ode113 in MATLAB, with cubic spline

interpolation used to calculate the values of the numerator and the denominator between the

gridpoints.44 Interpolation is then used to calculate values for the pricing function for the

specific values of ci,T−1 on the cost/belief grid

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
.

(d) Update the current guess of i’s pricing strategy using

P iter=k+1
i,T−1

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
= (1− τ)P iter=k

i,T−1

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
+ ...

τP
′

i,T−1

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
∀ci,T−1,ĉ

j
i,T−2, cj,T−2

where P
′
i,T−1 are the best response functions that have just been computed. In the finite

horizon case, τ = 1, i.e., full updating, works effectively unless we are close to prices where the

conditions required to characterize the unique best response fail to hold, in which case we also

try using τ = 1

1+iter
1
6

. See discussion below for how we update in the application where we use

an infinite horizon model.
42A fine grid is required because it is important to evaluate the derivatives accurately around the static best

response, where the derivative will be equal to zero.
43In practice, the exact value of the derivative will be zero at the static best response, so that the differential

equation will not be well-defined if this derivative is plugged in. We therefore begin solving the differential
equation at the price where Πi,T−1

3 + 1e − 4 = 0. Pricing functions are essentially identical if we add 1e-5 or
1e-6 instead.

44See discussion of tolerances in Appendix A.2.2.
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(e) Check if the maximum difference between P iter=k
i,T−1 and P

′
i,T−1, across all gridpoints, is

less than 1e-6. If so, terminate the iterative process, else update the iteration counter to

iter = iter + 1, and return to step 2(a).

(f) Verify that the solved pricing functions are monotonic in a firm’s own marginal costs,

and that, given the pricing functions of the rival, that the single-crossing condition holds for

the full range of prices used in the putative equilibrium.

Step 4. Compute i’s value Vi,T−1,

Vi,T−1

(
ci,T−2, ĉ

j
i,T−2, cj,T−2

)
= ...

ci∫
ci

cj∫
cj

 π

(
P ∗i,T−1

(
ci,T−1, ĉ

j
i,T−2, cj,T−2

)
, P ∗j,T−1

(
cj,T−1, cj,T−2, ĉ

j
i,T−2

)
, ci,T−1

)
+βVi,T (ci,T−1, cj,T−1, ci,T−1)

 ∗ ...
ψj(cj,T−1|cj,T−2)ψi(ci,T−1|ci,T−2)dcj,T−1dci,T−1

where we are recognizing that equilibrium play at period T − 1 will reveal i’s true cost to j.

Note that this is the case even if, hypothetically, ĉji,T−2 6= ci,T−2 (i.e., j was misled in period

T − 2) because i should find it optimal to use its equilibrium signaling strategy given its new

cost ci,T−1 in response to j using a strategy based on its ĉji,T−2 belief.

A.1.4 Earlier Periods.

This process is then repeated for earlier periods, with an appropriate changing of subscripts.

Given our assumption that first period beliefs reflect actual costs in a fictitious prior period,

this procedure will also calculate strategies in the first period of the game.

A.2 Infinite Horizon Model.

We use an infinite horizon model for some of our examples and the empirical application. We

find equilibrium pricing functions in the continuous type model using a modification of the

procedure described above: in particular, we follow the logic of policy function iteration (Judd

(1998)) to calculate values given a set of strategies.
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The equilibrium objects that we need to solve for are a set of stationary pricing functions,

P ∗i

(
ĉji,t−1, cj,t−1

)
and value functions Vi

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
which are consistent with each

other given the static profit function and the transition functions for firm types.

We start by solving the period T − 1 game described previously (i.e., assuming that there

is a one more period of play where firms will use static Bayesian Nash Equilibrium strategies)

to give an initial set of signaling pricing functions (P ∗,iter=1
i ). We then calculate firm values in

each state

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
if these pricing functions were used in every period of an infinite

horizon game. This is done by creating a discretized form of the state transition process and

calculating

V̂ iter=1
i = [I − βT ]−1π′i

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
where

π′i

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
=

ci∫
ci

cj∫
cj

πi
 P ∗,iter=1

i

(
ci,t, ĉ

j
i,t−1, cj,t−1

)
,

P ∗,iter=1
j

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci,t


ψj(cj,t|cj,t−1)ψi(ci,t|ci,t−1)dcj,tdci,t

and T is a transition matrix that reflects the transition probabilities for both firms’ types and

the behavioral assumption that equilibrium play in t (and future periods) will reveal period t

costs. P ∗,iter=1
j

(
cj,t−1, ĉ

j
i,t−1

)
will reflect P ∗,iter=1

i , applied to the states of the rival, when the

firms are symmetric.

V̂ iter=1
i is then used to compute a new set of pricing functions, P ∗,iter=2

i , and the process is re-

peated until prices converge (tolerance 1e-4). Even though policy function iteration procedures

do not necessarily converge, we find they work very well in our setting, when the conditions

for separation hold, although it is sometimes necessary to update the pricing function to be a

linear combination of the previous guess and the newly calculated best response. As illustrated

in Figure 3, converged pricing functions found by this method are essentially identical to the

pricing functions found for the early periods of long finite horizon games where the exact value

of t has almost no effect on equilibrium pricing strategies. The computational advantage of

this procedure comes from the fact that we do not perform the iterative procedure described

above for every period of the game: instead there is a single iterative procedure where we solve

for a single set of pricing strategies for the entire game.
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A.2.1 Speeding Up Solutions By Interpolating Pricing Functions.

When we consider more than two firms and allow for asymmetries, the solution algorithm

laid out above becomes slow, with most of the time spent solving differential equations. For

example, with 8-point cost/belief grids, three asymmetric firms and 50 iterations, we would

have to solve 25,600 differential equations. This would make estimation of the model using a

nested fixed point procedure very slow. On the other hand, reducing the number of gridpoints

can lead to inaccurate calculations of expected payoffs, and therefore strategies.

Examination of the equilibrium pricing functions (see, for example, Figure 3) shows that

as we vary rivals’ prior types, a firm’s pricing functions look like they are translated without

(noticeably) changing shape. We exploit this fact by solving for pricing functions for only

a subset of the

(
ĉji,t−1, cj,t−1

)
gridpoints and using cubic splines to interpolate the remaining

values.45 This allows us to achieve a substantial speed increase, while continuing to calculate

expected values accurately on a finer grid.

A.2.2 Tolerances and Updating Rules Used for the Estimation of the Cost Pa-
rameters Using the Infinite Horizon Model.

In Section 4 we estimate the cost parameters using a nested fixed point algorithm, which means

that both speed and accuracy are important. After considerable experimentation, we use the

following tolerances:

� for the parameter search using fminsearch we set the tolerance for the parameter values

at 1e-5 and the tolerance on changes to the objective function at 1e-5. The value of

the minimized objective function is typically less than 0.0002, compared with the initial

guess, for which we use estimates of the parameters assuming firms use static Bayesian

Nash pricing strategies, which usually gives an objective function value of around 0.2.

� the tolerance for criterion for the pricing functions when solving the model is 1e-6 (i.e.,

at none of the grid points should the price on the best response pricing function be more

than 1e-6 from the current guess).

45For example, when we estimate our model in Section 4, we use a seven-point cost grid ({1,..,7}) for the
profits and values of each firm. We solve for pricing functions for the full interaction of gridpoints {1,3,5,7}
and then interpolate the pricing functions for the remaining gridpoints.
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� for the differential equation solver, the initial step size is 5e-5 and the maximum step size

is 0.003 for the first ten iterations of the algorithm, but we then use an initial step size

of 1e-5 and a maximum step size of 0.001.

� we update the pricing function to be the best response for the first 15 iterations, and then

use a linear combination of the best response and the current guess where the weight on

the best response changes linearly from 1 (iteration 16) to 0.1 (iteration 115).

When we use these tolerances, the infinite horizon game is typically solved using somewhere

between 12 and 45 iterations, taking between 3 and 20 minutes. Estimation of the five pa-

rameters usually requires around 250 function evaluations, although the objective function and

parameters are usually close to their final values within 100 evaluations.

A.3 Two-Type Model.

We use a model where each firm can have one of two types when we want to examine all

strategies simultaneously or to consider a large number of alternative demand parameters.

An additional advantage is that because prices, profits and values can be calculated for each

possible type, we avoid small inaccuracies that result from numerical integration.

The key difference to the solution algorithm is that we no longer solve differential equations

to find best response pricing functions. Recall that in the continuous type model, the dif-

ferential equations characterize the unique separating best response when the signaling payoff

function satisfies several conditions. In the discrete type model, one can construct multiple

separating pricing functions that can be supported for different beliefs of the rival firm. To

proceed we therefore need to choose a particular pricing function. We describe our choice, and

the method we use to calculate the best response prices here. This procedure can be embedded

within the procedure for solving either a finite horizon or an infinite horizon game.

To be as consistent with the continuous type model as possible, we use the prices that

allow the two types to separate at the lowest cost, in terms of foregone current profits tak-

ing the current guess of the pricing function of the rival as given, to the signaling firm (i.e.,

“Riley” signaling strategies, which would also be those that satisfy application of the intuitive

criterion).46

46Of course, in the game we are considering it could be advantageous to the firms to use higher signaling
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The amended computational procedure is as follows (described for the infinite horizon case).

Suppose that we are looking to find the pricing strategy of firm i in period t when it believes

that j’s previous cost was cj,t−1 and j believes that i’s previous cost was ĉji,t−1. We will repeat

this process for each

(
ĉji,t−1, cj,t−1

)
combination, of which there will be four in the duopoly

model. We need to solve for two prices: i’s price when its cost is ci and its price when its cost

is ci.

Step 1. Find p∗i,t(ci), which will be the static best response, as the solution to

∂π̃

(
pi,t,Pj,t

(
cj,t,cj,t−1,ĉ

j
i,t−1

)
,ci

)
∂pi,t

= 0 where

π̃i

(
pi,t, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci

)
=

πi

(
pi,t, Pj,t

(
cj, cj,t−1, ĉ

j
i,t−1

)
, ci

)
Pr(cj,t = cj|cj,t−1) + ...

πi

(
pi,t, Pj,t

(
cj, cj,t−1, ĉ

j
i,t−1

)
, ci

)
Pr(cj,t = cj|cj,t−1)

Step 2. Find p∗i,t(ci). This is done by finding the price, p′, higher than p∗i,t(ci), which would

make the low cost firm indifferent between setting price p∗i,t(ci) and being perceived as a low

cost type, and setting price p′ and being perceived as a high cost type, i.e.,

π̃

(
p∗i,t(ci), Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci

)
+ βṼi,t+1(ci, ci, cj,t−1) = ...

π̃

(
p′, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci

)
+ βṼi,t+1(ci, ci, cj,t−1)

where

βṼi,t+1

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
= Vi,t+1

(
ci,t−1, ĉ

j
i,t−1, cj

)
Pr(cj,t = cj|cj,t−1) + ...

Vi,t+1

(
ci,t−1, ĉ

j
i,t−1, cj

)
(1− Pr(cj,t = cj|cj,t−1)).

We verify that, consistent with single-crossing, the ci type prefers to set the price p′ rather than

prices, because of how this raises rivals’ prices in equilibrium. This equilibrium consideration is ignored when
selecting the Riley best response.
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setting its static best response price. We also verify belief monotonicity when we calculate the

value functions. As illustrated in Section B.1, there are parameters for which belief monotonicity

fails.

56



B Additional Examples.

B.1 Two-Type Examples.

A model where each firm can have one of two types has a much lower computational burden

than the continuous type model. In this Appendix we will consider several parameterizations

of a two-type model. In all of them we assume that firms are symmetric and that in any period

ci = c = 8 or ci = c = 8.05. The probability that the cost remains the same as in the last

period is 0.5 ≤ ρ < 1. There are no signaling incentives when ρ = 0.5.

Refinement. A disadvantage of the two-type model is that for a given pricing strategy of

firm j, firm i’s separating best response pricing function is not unique in the sense that it

depends on how firm j will interpret the signal. We therefore impose a refinement that is

consistent with the logic of the “intuitive criterion” (Cho and Kreps (1987)), which has often

been applied as a refinement in discrete-type signaling games where only one player is signaling.

Specifically, we assume that the low cost type’s strategy will be the static best response, as in

the continuous type model, and, under assumptions that appropriately map Conditions 1-4 to

the two-type case, the high cost type’s best response price will be the lowest price that the low

cost type would be unwilling to set even if this would result in rivals’ perceiving it as a high

cost type rather than a low cost type. While this does uniquely define the best response, it

does not guarantee a unique equilibrium in the oligopoly signaling game, and we have identified

several examples in the infinite horizon version of the two-type model where there are multiple

equilibria. The results reported in this Appendix use an algorithm which, when an infinite

horizon equilibirum exists, appears consistently to select the equilibrium which corresponds to

the equilibrium in the early periods of a long finite horizon game.

Method. See Appendix A.3 for a description of the method used to solve the two-type model.

B.1.1 Outcomes for Alternative Serial Correlation and Demand Parameters.

We assume nested logit demand where the indirect utility function for consumer c has the form

ui,c = β − αpi + σνc + (1 − σ)εi,c. We choose β, α and σ so that, for each combination of

parameters that we consider, the CI equilibrium prices (at average cost levels) are $16 for each
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firm, the market share of each firm at these prices is 0.25, and the diversion, which measures

the proportion of a product’s lost demand that goes to the rival’s product, rather than the

outside good, when its price increases from the CI equilibrium price, has a value that we

specify. We focus on diversion because when more demand goes to the outside good, which

is like a competitor that always offers a fixed utility and does not respond to a signal, firms

have less incentive to signal and, as we will show, the belief monotonicity and single-crossing

conditions become harder to satisfy.47 Given assumed market shares, the lowest possible value

of this diversion measure is 1
3
, which corresponds to multinomial logit demand. We vary ρ from

0.5 (in which case there is no incentive to signal) to 0.99. We solve an infinite horizon version

of our model.

Figure B.1 shows the results for a fine grid of values of diversion and ρ. The orange crosses

indicate combinations where the conditions for characterizing best responses fail and we cannot

find a separating equilibrium. For combinations where we can find a separating equilibrium

the size and color of the circles indicate the percentage increase in average prices relative to

average static Bayesian Nash equilibrium prices with the same demand and serial correlation

parameters (these prices are also always very close to $16). When serial correlation is very low,

the price effects are always small whatever the level of diversion, and, for given diversion, the

price effects become larger as serial correlation increases. For given serial correlation, higher

diversion is associated with larger price effects, as it becomes more beneficial for a firm to

increase its rival’s price (because more of the demand that the rival loses will come to the firm),

and the increase in a rival’s price has a greater effect on the firm’s best response. For moderate

diversion, such as 0.6, an equilibrium cannot be sustained once serial correlation increases above

0.66. When diversion to rival products is very high, equilibria can be sustained with very large

price effects: we find a maximum price increase of 44.8%.48

47The intuition is that when the rival’s expected price increases, a firm may have a greater incentive to lower
its price, towards a static best response price, to take demand from the outside good. See below for an example.

48In the diagram, the highest serial correlation for which we can find an equilibrium falls when we increase
diversion above 0.95. This appears to reflect the fact that, at this level, small increases in diversion can increase
signaling prices significantly, leading the conditions to fail. For each considered value of diversion above 0.95,
we identify a value of ρ where signaling raises prices by more than 43.0% and 44.8%.
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Figure B.1: Equilibrium Average Price Increases in the Infinite Horizon Two-Type Duopoly
Model as a Function of Diversion and Serial Correlation of Costs
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Notes: red dots mark outcomes where there is a stationary separating equilibrium with average prices

less than 0.5% above static BNE levels. The blue circles mark outcomes where there is a stationary

separating equilibrium with larger average price increases relative to static BNE prices, and the size

of the circle is linearly increasing in the percentage difference in prices (the largest effect shown has

average prices increasing by 44.8%). Orange crosses mark outcomes where the conditions required to

solve for best response functions fail and we cannot find an equilibrium. The diversion is measured

by the proportion of demand that goes to the rival product when one product experiences a small

increase in price at CI Nash equilibrium prices given average costs.
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B.1.2 Failure of the Conditions Required for Existence of a Separating Equilib-

rium.

We now consider in more detail an example where the conditions required for separation fail.

Demand is the same as before (i.e., indirect utility is ui,c = 5−0.1pi+0.25νc+(1−0.25)εi,c), and

each firm’s marginal cost is either 8 (low) or 8.05 (high). We assume that ρ = 0.99 so a signal

is very informative about next period’s marginal costs and signaling incentives are strong.

Figure B.2: Equilibrium Prices in the Two-Type Marginal Cost Model (parameters described
in the text)
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Figure B.2 shows the full set of eight equilibrium prices in each period as we move backwards

from the end of the game. The legend denotes states by {“the firm’s perceived cost in t−1”, “its

rival’s perceived cost in t−1” - “the firm’s realized marginal cost in t”} so blue indicates prices

for a firm whose perceived marginal cost in the previous period was high, its rival’s perceived

previous period cost was low, and a cross (circle) indicates that the firm’s current cost is low

(high).

The green crosses (LL-L) remain almost unchanged across periods, as they represent static

best responses when both players know that their rival is very likely to be setting the same

price, but, as we move earlier in the game, the remaining prices increase, because they involve

either signaling (by a c firm) or a static best response to a rival who is likely to be raising its

price to signal.

In period T − 6 the order of the prices changes with the HH-H price (red circle) below the
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HL-H price (blue circle). This implies that in period T −7, a firm that believes its rival is likely

to be high cost, is more likely to increase its rival’s next period (T − 6) price if it (the firm) is

believed to be low cost than if it is believed to be high cost. As profits increase in the rival’s

price, this will lead belief monotonicity to be violated.

Figure B.3: Period T − 6 Profit Functions in the Two-Type Game
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Why does the order of the red and blue circles switch? It reflects changes in both the

incentive to signal (i.e., the possible effect on future prices) and the cost of signaling (i.e., the

61



effect on current profits). Recall that in the two-type model the equilibrium price of the c

type is determined by the lowest price that the low-cost firm would be unwilling to set even

if choosing it would lead to it being perceived as high cost. Consider the cost, in terms of

foregone period T − 6 profit, for a low-cost firm of raising its price. The upper panel of Figure

B.3 shows the period T −6 one-period profit functions for a low cost firm given different beliefs

about previous firm types and the expected price of the rival.49 The lower panel shows the

corresponding derivatives of the profit function with respect to the firm’s own price. For prices

above $34, the marginal loss in profit from a price increase is greater for a red firm (i.e., a firm

likely to face a high cost rival) than a blue firm (i.e., a low cost rival) so it is less costly for the

blue firm to raise its price.50

Now consider the incentive of a low-cost firm to signal (i.e., to pretend to be high-cost).

The incentive of an HL (blue) firm to signal a high cost in period T − 6 is that it is very likely

to lead to its rival setting the black cross, rather than the green cross, price in period T − 5.

This difference is large, so that the incentive to signal is strong. The incentive of an HH (red)

firm to signal is that this will very likely lead to it facing the red, rather than the blue, circle

price in period T − 5. These period T − 5 prices are closer together (than the black and green

crosses) so the incentive to signal will tend to be weaker. The cost and the incentive effects

together lead to a reversal of the order of the period T − 6 equilibrium prices, causing belief

monotonicity to fail in period T − 7.

49For example, an HL firm expects to face a low-cost LH firm (setting a black cross price) with probability
0.99, so the expected rival price is $29.46.

50The crossing of the derivative functions reflects the failure of strategic complementarity (defined as ∂2πi

∂pi∂pj
>

0) for logit-based demand when prices are significantly above static profit-maximizing levels. The intuition is
that, as a rival’s price increases, the incentive for a firm to reduce its (high) price towards the static best
response price can increase.
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B.2 Alternative Sources of Asymmetric Information.

While it is plausible that, in many industries, firms have some private information about

their marginal costs and that whatever is unobserved is likely to be serially correlated, our

results are not dependent on assuming that it is marginal costs that are privately observed. In

this Appendix we consider three examples where marginal costs are fixed and known and the

asymmetric information is embedded in a different part of the profit function. In each case we

show that equilibrium prices can be significantly higher, and more volatile, than in the CI or

static incomplete information versions of the model. The fact that other formulations generate

similar results is not surprising, but we perform the calculations in order to emphasize the point

that we are not tied to the marginal cost assumption. In all cases, we assume single-product

duopolists, as in Section 3, and we solve the continuous type, infinite horizon version of our

model. The demand parameters also take on their baseline values from Section 3, and marginal

cost of each firm is held fixed at 8.

Variant 1: Weights on Profits and Revenues. In the first variant, we allow for there

to be uncertainty about the weight that each firm places on profits rather than revenues. A

number of theoretical and empirical papers study whether managers want to maximize profits

or alternative outcome variables, and whether shareholders might strategically choose to incen-

tivize managers to deviate from profit maximization (e.g., Sklivas (1987), Katz (1991), Murphy

(1999), De Angelis and Grinstein (2014)). The empirical literature suggests that managers

are affected by a variety of incentives that may be complicated for outsiders to evaluate and

which may vary over time, depending on oversight from shareholders or corporate boards, and

financial constraints.

Without assuming a particular theory of governance, we suppose that the weight placed on

profits by firm i in period t is τi,t and that this variable lies on the interval [0.89, 0.9], with the

remaining weight on firm revenues. As before, we suppose that the variable evolves according to

a truncated AR(1) process, with ρ = 0.8. The standard deviation of the innovations is chosen

so that, as for our baseline model where marginal costs are private information, the probability

that a type will transition from the highest point of the support in one period to a value in the

lower half of the support in the next period is 0.32.

The first panel of Table B.1 reports the average CI price when both firms (are known to)
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maximize profits is 22.59. When a firm places some weight on revenues, it will tend to set a

lower price, and the average static BNE or CI price when the profit weight lies on [0.89, 0.90]

is 21.79. However, with signaling, average prices increase significantly: in this example, the

average Markov Perfect Bayesian Equilibrium price is 8.2% above the average price level when

both firms are known to maximize profits, with profits increasing by 18%. This example suggests

there may be some advantage to shareholders if they keep managers’ incentives opaque to rivals

even in markets where firms set prices for differentiated products.51

Variant 2: Weight on Profits of Other Firms in the Industry. In the empirical

Industrial Organization literature, it is common to model tacitly collusive behavior in a reduced-

form way by generalizing static first-order conditions to allow for each firm to place some

weight on the profits of other firms in the same market (Porter (1983), Bresnahan (1989),

Miller and Weinberg (2017)). This type of formulation could also be rationalized by models

where participants in financial markets become more optimistic about a firm’s prospects when

its rivals announce high profits (Rotemberg and Scharfstein (1990)) or by models where firms

maximize the overall returns of shareholders who hold stock in competitors (O’Brien and Salop

(1999), Azar, Schmalz, and Tecu (2018)).

We consider a model where rivals have some limited uncertainty about the weight that a

firm places on its own profit rather than the profit of the industry. Specifically we assume that

each firm places a weight τi,t of [0.98, 1] on its own profits, and 1 − τi,t on the profits of the

industry as a whole (of course, its own profits also contribute to industry profits). We assume

that the transition process has ρ=0.8 and σ = 0.0088, which means that the probability of a

type transitioning from the highest point of the support to below the median is 0.32, as in the

first example. As can be seen in the second panel of Table B.1, the effect is, once again, to

raise prices substantially in the dynamic game with asymmetric information.

Variant 3: Demand Shocks. Our experience in seminars is that many economists believe

it is more intuitive that some aspect of demand will be private information to the firm than

marginal costs will be.

Some formulations of demand uncertainty give rise to signaling incentives that would be

51The usual explanation for why shareholders might want to commit to incentivizing their managers to place
some weight on revenues comes from quantity-setting models where other firms will reduce their output when
a firm’s managers are committed to increase their output. In our model it is uncertainty about what firms are
trying to maximize that causes equilibrium prices to rise, through the mechanism of signaling.
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qualitatively different from the ones in our framework. For example, suppose that demand

has a logit structure and that each firm has private information about the serially correlated

and unobserved quality of its product. Duopolist firms observe each other’s prices but not

quantities, so that prices are informative about quality. A firm with higher quality will want

to charge a higher price, but its rival’s optimal price will likely decrease in the firm’s quality,

so it is unclear whether a firm will want to be perceived as high quality or as low quality. This

is likely to be a case where only some type of pooling equilibrium exists.

Here we consider a simple example where firms do have incentives to raise prices to signal

that their demand is high. Suppose that each firm sells its products in two markets. In one

market, the firms compete as duopolists, but in the other market the firm is a monopolist (so

for example, both firms are in market A, firm 1 is the only firm in market B, and firm 2 is the

only firm in market C). Due to the possibility of arbitrage, or some other constraint, each firm

can only set one price across the markets. One rationalization of this setup would be that each

firm has some loyal or locked-in customers, but that additional consumers are competed for.

Product quality is known, but firms are uncertain about the size of their rival’s loyal market.

Normalizing the size of the common market to 1, the sizes of the loyal markets lie between

[0.1, 0.12]. The utility specification is the same as before except loyal customers only choose

between a single product and the outside good. The transition assumptions are the same as

in variant 2. In this formulation, firms will set prices based on the weighted average marginal

revenues from the two markets, and when the size of their monopoly market is larger they will

prefer higher prices. A firm will therefore have incentive to raise its price to signal that its

monopoly market is larger.

The results are presented in the third panel of Table B.1. The addition of the loyal market,

where a firm’s demand is less elastic, raises prices under all information structures, but the

average signaling equilibrium prices are 10% higher than the prices under CI or in a static

game with asymmetric information.
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C Existence and Uniqueness of a Fully Separating Equi-

librium in a Finite Horizon Game with Linear De-

mand

As discussed in the text, Mailath (1989) and Mester (1992) provide proofs of the existence

and uniqueness of a fully separating equilibrium in a two-period duopoly, linear demand, con-

tinuous cost price-setting game and a three-period duopoly, linear demand, continuous cost

quantity-setting games respectively. This Appendix presents a theoretical proof of existence

and uniqueness of a fully-separating Markov Perfect Bayesian Equilibrium for a finite-horizon

duopoly pricing game with linear demand and marginal costs that are private information, un-

der a condition that the range of costs is “small enough” so that the single-crossing condition

holds. As explained in the text, we have to rely on computational analysis when assuming

nonlinear demand or an infinite horizon, and in our application we assume both.52 However,

we include our proof for the linear demand and finite horizon case for completeness.

We make the following specific assumptions on the model. There are two firms, and i will

index the firm.

Assumptions

A1 (linear demand). qi,t = ai − b1,ipi,t + b2,ipj,t, b1,i > b2,i > 0.

A2 (positive demand). The intercepts a are large enough that for all of the prices charged

on the equilibrium path, both firms will have positive output.

A3 (continuous cost interval). The marginal costs of each firm, ci,t, lie on compact intervals

where [ci, ci] where ci > ci > 0.

A4 (cost transitions). Costs evolve independently according to first-order Markov processes

with conditional densities Ψi(ci,t|ci,t−1), where the conditional density functions are smooth

in ci,t and ci,t−1 and strictly positive for all [ci, ci]. E(ci,t|ci,t−1) is continuous and strictly

increasing in ci,t−1.

A5 (discount factor). There is a common discount factor 0 < β < 1.

The statement of the results and the proof will use the following notation.

� πi,t denotes per-period profits in period t. πi,t = (pi,t − ci,t)qi,t(pi,t, p−i,t).
52Our proof is for two firms that may be asymmetric. Extending the proof to three symmetric firms is

straightforward.
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� Vi,t(ci,t−1, ĉi,t−1, cj,t−1) is i’s value at the beginning of period t, before ci,t is revealed, when

it is perceived to have cost ĉi,t−1, and its real cost is ci,t−1, and it believes that j’s t − 1

cost was cj,t−1.

� Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) (“signaling payoff function”) represents the expected current and

future profits (given equilibrium behavior in future periods) of firm i in period t, when it

sets price pi,t, has cost ci,t and is perceived, at the end of the period, as having cost ĉi,t.

cj,t−1 is i’s perception of j́’s cost in period t− 1. In equilibrium, this perception will be

correct so we denote it simply by cj,t−1. Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) is implicitly conditioned

on j’s period t pricing strategy, which will involve j setting a price with an average of

pj,t and which i assumes will reveal cj,t. Πi,t
k (ci,t, ĉi,t, pi,t, cj,t−1) denotes the derivative of

Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) with respect to the kth argument.

� Prices (the proof will indicate conditioning arguments where necesary):

– p∗i,t is i’s equilibrium strategy in a fully separating MBPE (i.e., it is a function);

– pBRi,t is i’s separating best response pricing function given some separating strategy

(not necessarily the equilibrium strategy) by j;

– p∗∗i,t is a price that is a statically optimal best response (i.e., maximizes i’s current

profits) given j’s strategy;

– pj,t is the average price set by j when it uses a particular strategy; and,

– our description of separating pricing strategies will refer to “initial values”, which

will reflect a p∗∗i,t price determined as the solution to a static profit maximization

problem when ci,t = ci, and, the “increment” which refers to the additional price

above this initial value that may reflect signaling behavior.

C.1 Preliminary Results.

We begin with a useful Lemma.

Lemma 1 In a fully separating Markov Perfect Bayesian Equilibrium, play on the equilibrium

path will have the following properties, (L-i) p∗i,t will be a function of ci,t and the costs ci,t−1 and

cj,t−1 revealed by prices at t− 1; (L-ii) the only effect of ci,t−1 on p∗i,t is through the effect that it
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will have on the expected value of pj,t; (L-iii) i’s period t price, and the inference that j makes

about ci,t, based on this price, will affect i’s profits in t and t+ 1 only.

Proof. (L-i) In a fully separating equilibrium, prices at t − 1 will reveal marginal costs at

t−1 and the first-order Markovian assumption on the Ψis implies that costs at t−1 contain all

available information from earlier periods about costs. The Markovian equilibrium assumption

implies that strategies depend on payoff-relevant state variables (current costs) and beliefs

about those variables, only. This implies that strategies can be functions of ci,t (which is

private information to i when pi,t is chosen), ci,t−1 and cj,t−1 only.

(L-ii) The equilibrium choice of p∗i,t will depend on its effect on expected profits in future

periods and expected profits at t. Property (L-i) implies that given pi,t, which reveals ci,t, ci,t−1

will not affect what happens at t+ 1. Expected profits in period t are (pi,t− ci,t)(ai− b1,ipi,t +

b2,ipj,t) so ci,t−1 can only affect i’s payoffs through its effect on pj,t.

(L-iii) Suppose that instead of equilibrium price p∗i,t, i sets a price p′i,t in the range of the

equilibrium price function. t + 1 strategies specify an optimal strategy for i given ci,t+1, cj,t

and the cost implied by p′i,t, and it will be optimal to use these strategies at t + 1 (because of

property (L-ii)), so t + 1 strategies will correctly reveal ci,t+1. Therefore charging p′i,t not p∗∗i,t

only affects profits at t and t+ 1.

Our results characterizing firm i’s separating best response function in period t, given a

fully revealing pricing strategy, of any form, by j and the assumed form of strategies at t + 1,

are based on the following theorems which are adapted from Mailath (1987).

Theorem 1 Adapted from Theorems 1 and 2, and the Corollary, in Mailath (1987). If (MT-i)

Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) is smooth in arguments (ci,t, ĉi,t), (MT-ii) Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1) > 0 [be-

lief monotonicity], (MT-iii) Πi,t
13(ci,t, ĉi,t, pi,t, cj,t−1) > 0 [type monotonicity], (MT-iv) Πi,t

3 (ci,t, ĉi,t,

pi,t, cj,t−1) = 0 for only one pi, and for this pi, Πi,t
33(ci,t, ĉi,t, pi,t, cj,t−1) < 0 [strict quasi-concavity],

(MT-v) there exists k > 0 such that Πi,t
33(ci,t, ĉi,t, pi,t, cj,t−1) ≥ 0 implies

∣∣Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1)

∣∣ >
k, then a pricing function pBRi,t (ci,t, cj,t−1) that solves the differential equation

∂pBRi,t (ci,t, cj,t−1)

∂ci,t
= −Πi,t

2 (ci,t, ci,t, pi,t, cj,t−1)

Πi,t
3 (ci,t, ci,t, pi,t, cj,t−1)

and has a lower initial value condition where pBRi,t (ci, cj,t−1) solves Πi,t
3 (ci, ci, p

BR
i,t (ci, cj,t−1), cj,t−1) =
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0 is the unique fully separating best response function if a fully separating best response exists.

Theorem 2 Adapted from Theorem 3 in Mailath (1987). Suppose assumptions (MT-i)-(MT-

v) in Theorem 1 hold. If (MT-vi), for (ĉi, p) in the graph of pBRi,t (ci,t, cj,t−1),
Πi,t

3 (ci,t,ĉi,t,pi,t,cj,t−1)

Πi,t
2 (ci,t,ĉi,t,pi,t,cj,t−1)

is either strictly increasing or decreasing in ci,t [single-crossing], then the fully separating best

response described in Theorem 1 exists.

C.2 Main Result.

The following theorem gives our main result.

Theorem 3 If ci−ci is small enough for all i, in any finite horizon game there will exist

a unique fully separating MPBE where, on the equilibrium path, firm i’s equilibrium pricing

strategy p∗i,t(ci,t, ci,t−1, cj,t−1) in any period t < T has the form of the best response function

described in Theorem 1. In period T firms will choose static payoff-maximizing prices given

their beliefs about rivals’ costs in period T − 1. In periods t < T , pricing strategies will

have the following features: (T-i) (a) the initial values (i.e., static best response prices when

ci,t =ci) are functions of cj,t−1 and ci,t−1 only (in the following we will denote the function

that determines the initial value gi,t(cj,t−1, ci,t−1)), and (b) the increment above the initial value

(a function fi,t(ci,t, cj,t−1)) is a continuous function of ci,t and cj,t−1 only, and in particular it

does not depend on pj,t; (T-ii) for all ci,t >ci the price charged is always above the static best

response price for ci,t, (T-iii) the effect of cj,t−1 on the increment only comes through its effect

on i’s belief about the distribution of cj,t+1, and (T-iv) (a) i’s pricing function is continuous

and strictly increasing in ci,t, (b) i’s pricing function is continuous and strictly increasing in

pj,t, (c) i’s pricing function is continuous and strictly increasing in ci,t−1 and (i’s perception

of) cj,t−1.

C.2.1 Proof.

The proof uses induction, showing that if strategies have this form in periods t + 1,...,T − 1

there will exist a unique MPBE with the required form in any period t < T − 1. We then
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show that the form of equilibrium strategies in period T will lead to strategies that have the

specified form in period T − 1.

Period t < T−1. The logic of the proof for period t is to show that the conditions required for

Mailath’s theorems hold given Lemma 1 and the assumed equilibrium form of pricing behavior

in t + 1. This shows that there will be a unique best response pricing function for each firm

given any separating strategy of the other firm. This will let us show some of the features

specified above. We then show that there can be only one pair of pricing functions with these

properties that are best responses to each other, and this will allow us to show the remaining

features.

Uniqueness, Existence and Form of i’s Fully Separating Best Response Function Given j’s

Strategy.

We go through the conditions required for Mailath’s results in turn.

Condition (MT-i): Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) is smooth in arguments (ci,t, ĉi,t). Lemma 1 implies

that

Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) = Eπi,t(ci,t, pi,t, pj,t) + βE(Vi,t+1(ci,t, ĉi,t, cj,t|cj,t−1))

where the second expectation is over the cost that j reveals in period t. Eπi,t(ci,t, pi,t, pj,t) =

(pi,t − ci,t)(ai − b1,ipi,t + b2,ipj,t) which is smooth in ci,t. Profits in t + 1 will be equal to

(pi,t+1 − ci,t+1)(ai − b1,ipi,t+1 + b2,ipj,t+1) and smoothness of the period-t expectation of these

profits follows from the assumed smoothness of the Ψi conditional densities (A4) and the

continuity of the pricing functions (T-i/T-iv). Similar logic (and the results concerning period

T prices below) implies that the period-t expectation of discounted profits in t + 2 and future

periods will also be continuous in ci,t, cj,t−1 and ĉi,t. Therefore βE(Vi,t+1(ci,t, ĉi,t, cj,t|cj,t−1)) will

be smooth in ci,t, ĉi,t and cj,t−1.

Condition (MT-ii): Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1) > 0. From Lemma 1, ĉi,t only affects future profits

in period t + 1 given equilibrium play from t + 1 forwards (L-iii). Denote expected profits in

period t+1 when j charges an expected price pj,t+1(ĉi,t, cj,t), Eπi,t+1(ci,t+1, pi,t+1, pj,t+1(ĉi,t, cj,t)),
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so

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1) =

∫ ∫
∂Eπi,t+1(ci,t+1, pi,t+1, pj,t+1(ĉi,t, cj,t))

∂ĉi,t
Ψi(ci,t+1|ci,t)Ψj(cj,t|cj,t−1)dci,t+1dcj,t

Given that
∂pj,t+1(ĉi,t,cj,t)

∂ĉi,t
> 0 (T-iv (c)), it is sufficient to show that

∂Eπi,t+1(ci,t+1,pi,t+1,pj,t+1)

∂pj,t+1
> 0.

Express the price that i charges in t+1 as pi,t+1 = p∗∗i,t+1(pj,t+1, ci,t+1)+p′, where p∗∗i,t+1(pj,t+1, ci,t+1)

is the static profit-maximizing best response to pj,t+1 given ci,t+1 and p′ ≥ 0 is an increment

above the static best response price. Linear demand implies that i’s expected t+ 1 profit is

Eπ′i,t+1(ci,t+1, p
′, pj,t+1) = (p∗∗i,t+1(pj,t+1, ci,t+1) + p′ − ci,t+1)(ai − b1,i(p

∗∗
i,t+1(pj,t+1, ci,t+1) + p′) + b2,ipj,t+1)

= Eπ′i,t+1(ci,t+1, 0, pj,t+1) +

∫ p′

0

∂Eπ′i,t+1(ci,t+1, x, pj,t+1)

∂x
dx

= Eπ′i,t+1(ci,t+1, 0, pj,t+1) +

∫ p′

0

(−2bi,1x)dx

where the last line uses the facts that

∂Eπ′i,t+1(ci,t+1, x, pj,t+1)

∂x
= ai − 2b1,ip

∗∗
i,t+1(pj,t+1, ci,t+1)− 2b1,ix+ b2,ipj,t+1 + b1,ici,t+1,

and

ai − 2b1,ip
∗∗
i,t+1(pj,t+1, ci,t+1) + b2,ipj,t+1 + b1,ici,t+1 = 0,

as p∗∗i,t+1(pj,t+1, ci,t+1) is the static profit-maximizing price, so that
∂Eπ′i,t+1(ci,t+1,x,pj,t+1)

∂x
= −2b1,ix.

Therefore,

∂Eπ′i,t+1(ci,t+1, p
′, pj,t+1)

∂pj,t+1

=
∂Eπ′i,t+1(ci,t+1, 0, pj,t+1)

∂pj,t+1

= b2,i(p
∗∗
i,t+1(pj,t+1, ci,t+1)− ci,t+1) > 0.

where the final step uses the envelope-theorem as p∗∗i,t+1(pj,t+1, ci,t+1) is the static profit-maximizing

price.
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Condition (MT-iii): Πi,t
13(ci,t, ĉi,t, pi,t, cj,t−1) > 0.

∂Πi,t(ci,t, ĉi,t, pi,t, cj,t−1)

∂pi,t
= ai − 2bi,1pi,t + b2,ipj,t + bi,1ci,t

as, conditional on ĉi,t, pi,t only affects period t profits. Therefore,

Πi,t
13(ci,t, ĉi,t, pi,t, cj,t−1) =

∂Πi,t(ci,t, ĉi,t, pi,t, cj,t−1)

∂pi,t∂ci,t
= b1,i > 0

Condition (MT-iv): Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) = 0 for only one pi,t, and for this pi,t, Πi,t

33(ci,t, ĉi,t, pi,t, cj,t−1)

< 0.

Πi,t
33(ci,t, ĉi,t, pi,t, cj,t−1) = −2b1,i < 0 ∀pi,t

so Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) will have a unique maximum in pi,t.

Condition (MT-v): there exists k > 0 such that if Πi,t
33(ci, ĉi, pi, cj,t−1) ≥ 0 then

∣∣Πi,t
3 (ci, ĉi, pi, cj,t−1)

∣∣ >
k. As Πi,t

33(ci, ĉi, pi, cj,t−1) < 0 for all pi,t, the condition is trivially satisfied.

Therefore, based on Theorem 3, if a fully separating best response function in period t

exists, it is uniquely characterized as pBRi,t (ci,t, cj,t−1) as the solution to a differential equation

∂pBRi,t (ci,t, cj,t−1)

∂ci,t
= −Πi,t

2 (ci,t, ci,t, pi,t, cj,t−1)

Πi,t
3 (ci,t, ci,t, pi,t, cj,t−1)

with a lower initial condition price pBRi,t (ci, cj,t−1) that solves Πi,t
3 (ci, ci, p

BR
i,t (ci, cj,t−1), cj,t−1) = 0.

Period t Pricing Function Properties, Part I

Before discussing single-crossing, we can now prove some features of period-t pricing func-

tions given this characterization of best responses.

Feature (T-ii): the price charged is always above the static best response price for all ci,t >ci.
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Proof: as Πi,t
2 (ci,t, ci,t, pi,t, cj,t−1) > 0, and is independent of the value of pi,t, and Πi,t

3 (ci,t, ci,t, pi,t, cj,t−1) <

0 for prices above the static best response price, and Πi,t
3 (ci,t, ci,t, pi,t, cj,t)→ 0 as pi,t approaches

the static best response price for any ci,t, the solution to the differential equation for a specific

ci,t will be greater than the static best response price given ci,t except at ci.

Feature (T-i(b)): the increment above the initial value is a function of ci,t and cj,t−1 only, and

it does not depend on pj,t.

Proof: the initial value solves Πi,t
3 (ci, ci, p

∗
i,t(ci), cj,t−1) = 0, i.e., it is a static best response

when ci,t = ci to the expected price pj,t. As the numerator in the differential equation,

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1), is independent of pi,t and Πi,t

3 (ci,t, ĉi,t, pi,t, cj,t−1) depends only on the

increment of pi,t above the intercept, the increment depends only on ci,t and (possibly) cj,t−1.53

Feature (T-iii): the effect of cj,t−1 on the increment only comes through its effect on i’s belief

about the distribution of cj,t+1.

Proof: cj,t−1 affects pj,t and i’s period t belief about the distribution of cj,t+1, which will affect

i’s expectation of pj,t+1 . Given T-i(b), pj,t does not affect the increment. From Lemma 1

(L-ii), at the start of period t + 1, the expectation of pj,t+1 will depend only on cj,t (revealed

by j’s period t price) and ĉi,t. Therefore the only effect that cj,t−1 can have on the period t

increment, which is set before pj,t is revealed, is that it affects i’s beliefs about the distribution

of cj,t+1.

Feature (T-iv): (a) the pricing function is increasing and continuous in ci,t.

53The proof of (MT-ii) shows that Πi,t
3 only depends on the increment of pi,t above the static best response

price for ci,t (not the initial value which is the best response for ci). However, given linear demand, static best
responses are given by

p∗∗i,t =
ai

2b1,i
+
ci,t
2

+
b2,i
2b1,i

pj,t

so the increment of the static best response price above the static best response for ci,t =ci only depends on
ci,t−ci.
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Proof: (a) as Πi,t
2 (ci,t, ci,t, pi,t, cj,t−1) > 0 and Πi,t

3 (ci,t, ci,t, pi,t, cj,t−1) < 0 above the static best

response price, the pricing function must be increasing in ci,t.

Single-Crossing.

Condition (MT-vi): we need to show that, in the graph of (ĉi,t, pi,t),
Πi,t

3 (ci,t,ĉi,t,pi,t,cj,t−1)

Πi,t
2 (ci,t,ĉi,t,pi,t,cj,t−1)

is either

strictly increasing or decreasing in ci,t. This amounts to showing that
∂

Π
i,t
3 (ci,t,ĉi,t,pi,t,cj,t−1)

Π
i,t
2 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t
is

either positive or negative within the graph of (ĉi,t, pi,t)

∂
Πi,t

3 (ci,t,ĉi,t,pi,t,cj,t−1)

Πi,t
2 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t
=

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1)

∂Πi,t
3 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t
−Πi,t

3 (ci,t, ĉi,t, pi,t, cj,t−1)
∂Πi,t

2 (ci,t,ĉi,t,pi,t,cj,t−1)
∂ci,t(

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1)

)2

The denominator is positive. As
∂Πi,t

3 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci
= b1 > 0, and Πi,t

2 (ci,t, ĉi,t, pi,t) > 0 the

first term in the numerator is strictly positive, and does not depend on pi,t. Recognizing that
∂pj,t+1

∂ci,t∂ĉi,t
= 0,

∂Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1)

∂ci,t
= βb2,i

∫ cj

cj

∫ ci

ci

(p∗∗i,t+1(ci,t+1, pj,t+1)−ci,t+1)
∂pj,t+1

∂ĉi,t

∂Ψi(ci,t+1|ci,t)
∂ci,t

Ψj(cj,t|cj,t−1)dci,t+1dcj,t.

∂pj,t+1

∂ĉi,t
is positive (T-iv). With linear demand, the static mark-up, p∗∗i,t+1(ci,t+1, pj,t+1) − ci,t+1,

will decrease in ci,t+1, and given the assumptions on the densities Ψi,
∫

(p∗∗i,t+1(ci,t+1, pj,t+1) −

ci,t+1)
∂Ψi(ci,t+1|ci,t)

∂ci,t
dci,t+1 < 0, but it will be bounded.

For prices at or above the static best response price, Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) ≤ 0, but, crit-

ically, Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) must be close to 0 when pi,t is not too far above the static best

response price. As the signaling price function is continuous and increasing in ci,t, and is equal

to the static best response price when ci,t =ci, it follows that
∂

Π
i,t
3 (ci,ĉi,pi)

Π
i,t
2 (ci,ĉi,pi)

∂ci
> 0 when the interval

[ci,ci] is small enough.

Therefore, from Theorem 2, the unique fully separating best response function described

above exists.

A Unique MPBE in Period t Given the Form of the Best Response Functions.

The proof so far has chosen that, given a separating pricing strategy of j, i will have a

unique fully separating best response that takes the required form. We now show that, with
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linear demand, the pair of separating functions used by i and j, given a pair ci,t−1 and cj,t−1, as

best responses to each other, will be unique (i.e., there cannot be more than one distinct pair

of best response functions that are best responses to each other).

Recall that the only effect of a change in pj,t is on the intercept of i’s pricing function.

Therefore, holding fixed strategies in future periods, a change in j’s period t strategy only

translates i’s best response pricing function upwards and downwards. It follows that there can

only be a unique equilibrium if, for both i and j, 0 <
∂p∗i,t
∂pj,t

< 1.

Proof:
dp∗i,t(ci)

dpj,t
=

b2,i
2b1,i

, which, given A1, is strictly greater than zero and strictly less than one,

as required.

Period t Pricing Function Properties, Part II.

We can now show the remaining features of the equilibrium pricing functions.

Feature (T-i(a)): the initial values (i.e., static best response prices when ci,t =ci) are continuous

functions of cj,t−1 and ci,t−1 only.

Proof: this follows directly from the Markovian assumption as cj,t−1 and ci,t−1 are sufficient

to determine both players’ beliefs about period t costs, and, given Theorem 3, to uniquely

determine pj,t.

In the following, we will denote the function that determines the initial value gi,t(cj,t−1, ci,t−1).

The increment above the initial value, which we will denote fi,t(ci,t, cj,t−1), is a continuous func-

tion of ci,t and cj,t−1 only. From T-i(b), the increment does not depend on pj,t.

Feature (T-iv(b)): i’s pricing function is continuous and strictly increasing in pj,t, and feature

(T-iv(c)): i’s pricing function is continuous and strictly increasing in (i’s perception of) cj,t−1.

Proof: The equilibrium price functions have the form

p∗i,t = gi,t(ci,t−1, cj,t−1) + fi,t(ci,t, cj,t−1)
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where, as already shown, gi,t(ci,t−1, cj,t−1) is the solution to

gi,t(ci,t−1, cj,t−1) =
ai

2b1,i

+
ci

2
+

b2,i

2b1,i

pj,t(ci,t−1, cj,t−1)

which is increasing and continuous in pj,t. From the perspective of firm i, pj,t is equal to

pj,t =
aj

2b1,j

+
cj

2
+

b2,j

2b1,j

pi,t +

∫ cj

cj

fj,t(cj,t, ci,t−1)Ψj(cj,t|cj,t−1)dcj,t

where the continuity of the increment f and the conditional density Ψj(cj,t|cj,t−1), and the

properties that (i) fj,t(cj,t, ci,t−1) is increasing in cj,t, and (ii) the integral is increasing in cj,t−1

means that pj,t is continuous and increasing in cj,t−1, holding pi,t fixed. But as pi,t is also

increasing, and continuous, in pj,t and vice-versa, both pricing functions will also be increasing

and continuous in both ci,t−1 and cj,t−1.

Strategies in Period T .

It remains to show that strategies in the final period have a form that will lead to the type

of separating equilibrium strategies described above in period T − 1. The required features

are that:

� the period T equilibrium pricing function of firm i is continuous in ci,T , ci,T−1 and cj,T−1;

and,

� the expected value pi,T is increasing in cj,T−1.

In period T , both firms will use static optimal strategies given their beliefs about their

rival’s previous price. Therefore

p∗i,T =
ai

2b1,i

+
ci,T
2

+
b2,i

2b1,i

pj,T

where

pj,T =
aj

2b1,j

+
b2,j

2b1,j

pi,t +
E(cj,T |cj,T−1)

2
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and solving these equations simultaneously gives

pj,T =

(
aj

2b1,j
+

aib2,i
4b1,jb1,i

)
+

b2,jE(ci,T |ci,T−1)

4b1,j
+

E(cj,T |cj,T−1)

2(
1− b2,ib2,j

4b1,ib1,j

)
so

p∗i,T =
ai

2b1,i

+
ci,T
2

+
b2,i

2b1,i


(

aj
2b1,j

+
aib2,i

4b1,jb1,i

)
+

b2,jE(ci,T |ci,T−1)

4b1,j
+

E(cj,T |cj,T−1)

2(
1− b2,ib2,j

4b1,ib1,j

)
 .

Given the form of Ψi and Ψj (A4), p∗i,T will be continuous in ci,T , ci,T−1 and cj,T−1, and pj,T is

increasing in ci,T−1, as required.
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D Empirical Application: The Effects of the MillerCoors

Joint Venture

This Appendix describes the data used in our analysis, as well as additional analysis that is not

presented in the text. Readers are referred to Miller and Weinberg (2017) for more background

on the JV as well as more details concerning the data/sample selection etc..

D.1 The Joint Venture.

The MC JV, announced in October 2007, effectively merged the U.S. brewing, marketing and

sales operations of SABMiller (Miller) and MolsonCoors (Coors), the second and third largest

U.S. brewers. The Department of Justice (DOJ) decided not to challenge the transaction in

June 2008 because it expected “large reductions in variable costs of the type that are likely to

have a beneficial effect on prices”.54 For example, the JV was expected to lower transportation

costs by producing Coors products at Miller breweries around the country. Ashenfelter, Hosken,

and Weinberg (2015) provide evidence that transportation efficiencies were realized.

MW show that, at a national level, the real prices (i.e., deflated by the CPI-U price index)

of the most popular domestic brands, such as Bud Light (BL), Miller Lite (ML) and Coors

Light (CL), increased after the JV, relative to the prices of imported brands, such as Corona

Extra and Heineken, which MW use as controls for industry-wide cost shocks. Regressions in

Appendix D.4 quantify these price increases to lie between 40 cents and a dollar per 12-pack,

or 3%-6%, depending on the specification. We will proceed assuming that MW’s interpretation

that the relative price increase was a causal anticompetitive effect of the JV is correct.55

An important feature of the relative price change is that AB’s prices increased as much as

those of Miller and Coors. If AB’s marginal costs were unaffected by the JV, this pattern is

inconsistent with static CI Nash pricing, as a static best response function would predict that

AB should have responded to any JV price increase by raising its prices by a smaller amount.

54Department of Justice press release, 5 June 2008.
55This interpretation is complicated by how the Great Recession may have affected demand and the fall in

the deflator, from 220.0 in July 2008 to 210.2 in December 2008, at exactly the same time that the merger was
being consummated.
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D.2 IRI Data.

The data comes from the beer category of the IRI Academic Dataset (Bronnenberg, Kruger,

and Mela (2008)). The underlying data is at the weekly UPC-store-level from 2001 to 2011.

We only use data from grocery stores.

We use different samples at different points of our analysis. For example, when we extend

MW’s demand and conduct parameter analysis, we use their samples, whereas when we calibrate

our model we use a sample that we view as appropriate. For example, MW exclude sales of

cans and bottles in 18-packs. These are unimportant for most brands, but account for more

than 20% of volume sold for the three domestic flagship brands (Bud Light (BL), Miller Lite

(ML) and Coors Light (CL)) so we do not want to exclude them. We also stop our pre-JV

sample at the time that the JV was announced, excluding the period of the DOJ’s investigation

when ML prices dropped dramatically.

D.2.1 Data Selection for the Demand and Conduct Analysis (presented in Ap-

pendices D.8 and D.9).

We follow MW in using the following selection of data.

� selection of markets: 39 geographic (IRI defined) regional markets excluding (e.g.,

because they lack other types of data that will be used in demand estimation, or are

viewed as having too few beer sales) the following markets with some stores selling beer

in the data: Harrisburg/Scranton; Philadelphia; Providence RI; Tulsa; Minneapolis-St.

Paul; Oklahoma City; Salt Lake City; Kansas City; New England; Pittsfield; Eau Claire,

WI.

� brands: 13 brands, which are BL, ML, CL, Budweiser, Miller Genuine Draft, Miller High

Life, Coors, Corona Extra, Corona Light, Heineken, Heineken Premium Light, Michelob

Ultra, Michelob Light.

� pack sizes: packages of cans and glass bottles containing the equivalent of 6, 12, 24 and

30 12oz. servings. 24 and 30-packs are aggregated into a single “large” size. Prices are

calculated as total dollars sold divided by volume in 12-pack equivalents.

� product: a product is a brand × pack size (6-pack, 12-pack, “large”) combination.
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� time periods: for demand and supply estimation, data from January 2005 to December

2011 is used, but months from June 2008 to May 2009, i.e., the period immediately after

the JV was consummated, are excluded. Monthly data is created by allocating individual

days within a week to their correct month, and assuming that sales within a week are

spread equally across the days in the week, before aggregating to the monthly level.

� distances and diesel prices: we use MW’s estimated distance from the brewery or

port (for Heineken) to the market, measured in thousands of miles. Monthly diesel prices

come from the U.S. Energy Information Administration.

� income data: the random coefficients models are estimated using data on household

income taken from the 2005-2011 PUMS samples of the American Community Survey

(ACS). We use the same samples as MW to estimate demand.

� deflator: when using real prices, or real diesel prices, they are deflated to January 2010

levels using the CPI-U All Urban Consumers-All Items price index.

The following additional variables are defined:

� market size: for each market, market size is defined as 150% of the maximum of the total

sales, measured in 12-pack equivalents, of all of the brands listed above plus 23 others

(including popular brands such as Busch and Busch Light) in the package sizes/types

that are being used. When we estimate demand using weekly data, we use an alternative

definition that defines demand as 150% of the sum of the maximum sales across the stores

observed in the sample that week.

� distance measure: the distance measure is constructed by multiplying deflated diesel

prices by the driving distance from the brewery, or port in the case of Heineken, to the

market.

� demand instruments: to estimate demand it is necessary to define instruments for a

product’s price and its share of volume sold amongst the products in its nest. MW use

the following instruments:

– the product’s own distance measure (iv-1)
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– the sum of the distance measures for all of the products in the nest (iv-2)

– the number of products in the nest (iv-3)

– a dummy for domestic products after the JV (iv-4)

– (iv-2) and (iv-3) interacted with a dummy for products produced by Miller, Coors,

AB or MillerCoors

– (iv-2) and (iv-3) interacted with a dummy for products produced by AB

When we estimate demand allowing for a flagship nest and an “other brand” nest, (iv-1) and

(iv-4) are interacted with a dummy for flagship products, and the other instruments are defined

at the nest level (e.g., adding over all products in the same nest, rather than all products).

However, all three package sizes are available for all flagship products in all markets, so, for the

flagship nest, the (iv-3) instruments are dropped due to collinearity.

D.2.2 Data Selection for the Calibration of Our Model.

For our calibration we depart from MW’s selection in the following aspects.

� selection of markets: we use observations from all market-weeks where we observe the

flagship brands being sold in at least 5 stores. This gives us 45 markets before the JV,

although some markets do not meet the criteria in some weeks. The markets that are

added back are: Eau Claire, Kansas City, Minneapolis, New England, Oklahoma City,

Salt Lake City. Boston never meets the 5 store criterion after the JV so it is excluded

from our estimates of post-JV price dynamics.

� pack sizes: packages of cans and glass bottles containing the equivalent of 6, 12, 18, 24

and 30 12oz. servings. These sizes are treated separately, but prices are converted into

12-pack equivalents.

� time periods: we use the months from January 2001 to October 2007 for the pre-JV

period. The months after May 2009, until December 2011, are the post-JV period.
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Table D.1: Highest-Selling Beer Brands in 2007 with Ownership, Share and Average Nominal
Retail Prices per 12-Pack.

2007 2011
Brand Company Packs % 18+ Mkt. Share Price Mkt. Share Price

Bud Light∗,† AB 10 72.5% 15.7% $8.29 15.7% $8.92
Miller Lite∗,† M 10 75.1% 10.0% $8.11 8.4% $8.73
Coors Light∗,† C 10 74.8% 8.3% $8.36 9.4% $8.98
Budweiser† AB 10 70.8% 7.7% $8.30 6.5% $9.00
Corona Extra†,♦ GM 5 15.6% 4.1% $13.88 3.9% $13.46
Natural Light∗ AB 7 68.6% 3.9% $6.01 3.2% $7.15
Busch Light∗ AB 9 78.4% 2.8% $6.07 2.5% $6.96
Miller High Life† M 9 54.1% 2.4% $6.33 2.2% $7.21
Heineken†,♦ H 7 12.8% 2.3% $14.06 2.3% $13.86
Miller Genuine Draft† M 10 67.0% 2.3% $8.26 1.3% $8.94
Michelob Ultra∗,† AB 9 27.4% 2.1% $10.05 2.4% $10.51
Busch AB 9 70.0% 1.9% $6.08 1.6% $7.05
Keystone Light∗ C 6 81.4% 1.4% $5.83 1.5% $7.03
Budweiser Select AB 9 62.0% 1.3% $8.37 0.7% $8.76
Milwaukee’s Best Light∗ M 6 66.8% 1.3% $5.37 0.8% $6.19
Corona Light∗,†,♦ GM 3 2.3% 1.2% $14.23 1.3% $13.79
Tecate♦ H 7 66.3% 1.2% $8.65 1.2% $9.04
Natural Ice AB 7 51.3% 1.1% $5.96 0.9% $7.19
Pabst Blue Ribbon SP 9 49.3% 1.0% $6.26 1.4% $7.53
Milwaukee’s Best M 5 61.8% 0.8% $5.46 0.4% $6.46
Coors† C 10 73.3% 0.8% $8.44 1.0% $8.84
Michelob Light∗,† AB 7 29.3% 0.7% $9.76 0.3% $10.72
Heineken Prem. Light∗,†,♦ H 5 1.9% 0.6% $14.28 0.5% $14.18

Notes: the table lists the 20 highest-selling brands plus additional brands in MW’s sample. Market shares and
prices are based on all units sold in packs equivalent to 6, 12, 18, 24, 30 and 36 12oz servings. “Packs” is the num-
ber of 2007 bottle/can-pack size combinations for 6, 12, 18, 24 and 30 packs, as 36 packs are rare. “% 18+ ” is the
percentage of 2007 volume sold in the packs of more than 18 cans or bottles. 2007 companies are: AB=Anheuser-
Busch, M=SABMiller, C=MolsonCoors, GM=Grupo-Modelo, H=Heineken, SP=S&P. Prices are nominal prices
per 12-pack equivalent (i.e., total dollars sold in all pack sizes divided by total volume in 144oz. units). ∗=light
beers, †=included in MW’s sample, ♦=imports.
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D.3 Brand Shares and Retail Prices.

Table D.1 lists the 20 brands with the largest sales by volume in 2007, together with additional

brands that MW include in their analysis. The table lists market shares and average nominal

prices (per 144 oz, the volume in a standard 12-pack) in 2007 and 2011.

Most domestic brands are differentiated from imports by being sold primarily in larger packs

and at lower prices. The relative prices of domestic brands increased after 2007, but, although

CL gained some share at ML’s expense, the domestic brewers’ market shares remained stable.

For example, AB’s volume share was 41.3% in 2007, 41.5% in 2009 and 39.6% in 2011, with

light beer shares of 50.0%, 50.8% and 50.6% respectively.56

D.4 Effects of the Joint Venture on Prices.

MW present estimates of the effects of the joint venture on prices. We present complementary

estimates here, which can be compared to the price increases predicted by our calibrated model.

An observation in our analysis is a brand-market-month, where real prices are calculated at

the brand level by adding up the total sales in package sizes equivalent to packs of 6, 12, 18,

24, 30 or 36 12oz. containers (we include 36-packs in this regression where they are available,

although they account for a small proportion of sales). The sample contains the following

brands: BL, ML and CL (i.e., the domestic flagship brands), Corona Extra and Heineken

which we will treat as providing controls for industry-wide shocks, as MW assume. The sample

runs from 2001 to 2011, and includes the period immediately before and following the JV.

We consider prices defined using all store-UPC-week observations in the appropriate sizes, and

prices that are defined excluding store-UPC-week observations that are identified as being sold

at temporary price reduction prices. We use both definitions as our analysis of price dynamics

will use price series where price reductions are removed.

Table D.2 presents the results from six specifications that differ depending on whether price

reductions are included, we use prices in levels or logs and whether brand-time trends are

included. The reported coefficients are the coefficients on Post-JV dummies for the domestic

flagship brands, so that they measure the increase in real prices relative to the two imported

56Appendix D.5 presents a figure showing the evolution of market shares over this period. The post-JV
decline in the shares of several non-flagship domestic brands reflected a continuation of pre-existing trends.
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Table D.2: Estimates of the Effects of the Joint Venture on Prices.

(1) (2) (3) (4) (5) (6)
$ Price/ Log(Price/ $ Price/ Log(Price/ $ Price/ Log(Price/
12 Pack 12 Pack) 12 Pack 12 Pack) 12 Pack 12 Pack)

Price Reductions incl. incl. incl. incl. excl. excl.

Post-JV Brand Dummies
Bud Light 0.853 0.046 0.428 0.046 0.485 0.032

(0.049) (0.005) (0.064) (0.005) (0.080) (0.007)
Miller Lite 1.024 0.065 0.415 0.045 0.492 0.034

(0.058) (0.006) (0.071) (0.006) (0.070) (0.006)
Coors Light 0.945 0.056 0.438 0.048 0.542 0.040

(0.060) (0.006) (0.068) (0.006) (0.076) (0.007)

Brand Time Trends N N Y Y Y Y

Observations 25,740 25,740 25,740 25,740 25,740 25,740
R2 0.971 0.973 0.972 0.973 0.970 0.970

Notes: the reported coefficients are on domestic brand × post-JV interactions. The brands included are
those listed, plus Corona Extra and Heineken. Observations at the brand-market-month level, aggre-
gating across packages containing the equivalent of 6, 12, 18, 24, 30 or 36 12oz. containers in cans or
glass bottles. All specifications include market-brand and time period fixed effects. Standard errors in
parentheses clustered on the market.

brands. The estimated price increases vary across the columns, but lie in the range from just

over 40 cents to one dollar, or 3% to 6%, and the price increases are smaller when we include

brand-specific time trends.

We will assume that these relative price changes reflect causal, anticompetitive effects of

the JV, which can be compared to the predictions of the effects of an unanticipated, exogenous

merger in our model. Of course, this interpretation does depend on assumptions, in particular

the validity of using the prices of imported brands as controls for cost changes.

D.5 Changes in Market Shares Around the Joint Venture.

Our preferred demand system for the calibration assumes that there is limited substitution

between the flagship domestic brands, brands that are not owned by the leading domestic firms

or the outside good of not drinking beer, so that post-JV price increases of the observed size

do not reduce demand of the leading domestic brands very much. This is consistent with some

of our estimates in Table D.4, although MW’s specifications imply more substitution.

Figure D.1 shows the volume-based market shares of the different brands included in the
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Figure D.1: Brand Market Shares Around the Joint Venture

Notes: Budweiser, Michelob Ultra and Michelob Light aggregated into “Other AB”; Miller Genuine

Draft and Miller High Life aggregated to “Other Miller”; Coors is “Other Coors”; Heineken and

Heineken Premium Light are “Heineken” and Corona Extra and Corona Light are “Corona”. Shares

based on volume sold in packages equivalent to 6, 12, 18, 24, 30 and 36 12oz containers.

demand analysis (for this purpose, we define market share based on the shares of all beers

in the IRI data, not just the ones that MW include in their demand model). We aggregate

non-flagship brands based on their pre-JV ownership. The main feature of the figure is that

while the real prices of the flagship brands and the other domestic brands increase after the JV,

brand market shares are stable, except for CL gaining share at the expense of ML, a change

that does not appear to be driven by prices. The shares of non-flagship Miller and AB brands

do fall after the JV, but this appears to reflect trends that existed before the JV. Imported

beers do not appear to gain share.
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D.6 Price Correlations Across Brands Before and After the JV.

Our model assumes that each firm sets a single price per period, including MC after the JV,

whereas the domestic brewers have large portfolios of brands that are sold in many different

packages. In this Appendix we show that the prices of brands sold by the same brewer are

highly correlated, and that Miller and Coors brand prices are more correlated after the JV.

This provides some comfort that our simplifying assumption is not too misleading.

Table D.3: Cross-Brand Correlations in Prices for 12-Packs

Pre-JV
(1) (2) (3) (4) (5) (6)

(1) Bud Light 1
(2) Miller Lite 0.891 1
(3) Coors Light 0.891 0.889 1
(4) Budweiser 0.994 0.892 0.893 1
(5) Miller Genuine Draft 0.872 0.973 0.870 0.872 1
(6) Coors 0.804 0.812 0.916 0.807 0.804 1

Post-JV
(1) (2) (3) (4) (5) (6)

(1) Bud Light 1
(2) Miller Lite 0.857 1
(3) Coors Light 0.874 0.967 1
(4) Budweiser 0.995 0.856 0.872 1
(5) Miller Genuine Draft 0.840 0.957 0.940 0.839 1
(6) Coors 0.825 0.934 0.959 0.824 0.916 1

Notes: the correlations are for brand-market-week average prices of 12-packs,
before the announcement of the JV and after its consummation. Average prices
are calculated including price reductions. Correlations for brands with the same
owner are slightly higher if price reductions are excluded.

Table D.3 reports the correlations of market-week prices of 12-packs of the flagship brands,

plus Budweiser, Miller Genuine Draft and Coors, before and after the JV. It is noticeable that

the prices of products with the same owner (e.g., BL and Budweiser) are highly correlated and

that the prices of Miller and Coors products become more correlated after the JV.

The reported correlations are high partly because beers retail at different prices in different

markets. We can also calculate correlations by regressing the price of one brand on the price of

another brand, and market and week fixed effects. These results also show significant increases

in correlations of Miller and Coors products after the JV: for example, the coefficient on the
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CL price when the ML price is the dependent variable increases from 0.68 before the JV to

0.84 after the JV. Patterns in the table and the regressions are similar if we use prices defined

to exclude temporary price reductions.

D.7 Price Series of Domestic Flagship 12-Packs Nationally, and in
Los Angeles and Seattle.

Figure 6 in the main text plots the monthly time series of average nominal retail prices for

12-packs of Bud Light, Miller Lite and Coors Light. The averages are calculated by dividing

total dollar sales (excluding sales at temporary store price reductions) by the number of units

sold. Price volatility is a clear feature of the time-series, and it is arguably a clearer feature

than the post-JV price increase. This motivates our use of a model where price volatility is a

feature of equilibrium pricing.

However, one might be concerned that volatility is partly driven by how average prices have

been calculated. Therefore, Figures D.2-D.4 show price series calculated in three different ways:

� nominal prices, including temporary store price reductions;

� real (deflated) prices, excluding temporary store price reductions; and,

� nominal average prices where the same weight (rather than volume share weights) are

placed on each store that is in the sample.

The third approach is motivated by the possibility that, at the store-level, prices do not

change, but that volatility in share-weighted average prices is due to the number of units sold

in high-priced and low-priced retail stores varying over time. While the different calculations

do change the level of average prices, volatility remains.
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Figure D.2: Real Prices for 12-Packs of the Domestic Flagship Brands Nationally and in Two
Regional Markets Around the JV. Prices are deflated monthly average prices excluding sales
indicated to be made at temporary price reductions.

Figure D.3: Nominal Prices for 12-Packs of the Domestic Flagship Brands Nationally and
in Two Regional Markets Around the JV. Prices are monthly average prices including sales
indicated to be made at temporary price reductions.
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Figure D.4: Nominal Average Store Prices for 12-Packs of the Domestic Flagship Brands Na-
tionally and in Two Regional Markets Around the JV. Reported values are unweighted average
monthly prices average across stores, where monthly average prices are calculated excluding
sales made at temporary price reductions.

D.8 Demand.

We estimate several demand specifications using the same selection of data that MW use. We

use the demand parameters as an input into our re-examination of the conduct and supermarkup

models presented by MW and MSW, and to support the simpler parameterization of demand

that we use when calibrating the supply-side parameters of our model.

Table D.4 reports five sets of demand estimates (the first three will be used in Appendix

D.9). For these specifications, we follow MW as closely as possible in the choice of data,

instruments and controls, except that we use optimal GMM for the nested logit models as

doing so affects the estimates.57 The first three columns contain one nested logit specification,

using monthly data, and two random coefficients nested logit (RCNL) specifications, where

the 13 MW brands are all included in a single inside nest, and preferences vary with income.

The remaining columns estimate nested logit models using monthly and weekly data (we will

use weekly price changes when estimating the cost parameters) where the flagship BL, ML

57None of the specifications yield exactly the same estimates as MW, although the monthly RCNL coefficients
are almost identical.
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and CL products are grouped into a “flagship nest”, and the remaining products are placed in

an “other beer” nest with a different nesting coefficient. The flagship nesting coefficients are

larger, consistent with these brands being particularly close substitutes.

The table reports several implied statistics for each specification, including the average

(across market-time periods) ML brand elasticity (i.e., the effect on demand when all ML

prices increase), the proportion of lost demand that switches to other flagship products when

a flagship price is increased, and the average, across pre-JV observations, predicted change in

flagship sales when the prices of all domestic products increase by 75 cents, which is within the

range of the observed post-JV price change.

The statistics vary across the specifications. Recall that domestic/flagship brand market

shares fall very little, if at all, after the JV in spite of the price increase (Appendices D.3-D.5).

Among the five specifications, this is most consistent with the estimates in columns (4) and

(5). In our calibration, we will therefore assume a price elasticity and a diversion rate which is

consistent with the estimates in these columns.

D.9 Tests of Collusive Models of Pricing in the Beer Industry.

Some people have suggested that, even if our model can explain why prices rose after the MC

JV, CI theories of tacit collusion provide pre-existing and satisfactory explanations. This is true

in the sense that folk theorems imply that one could likely construct some CI tacit collusion

model that would be able to explain any feature of prices almost perfectly. However, the specific

models advanced by MW and MSW can be tested. MW provide a supply-side framework where

they account for the increase in prices by a “change in conduct”, from assumed Bertrand Nash

pricing before the JV to partial joint-profit maximization after the JV, where the latter type of

conduct is viewed as reflecting tacit collusion. We will show that, using alternative identifying

assumptions, we can typically reject the hypothesis of Nash pricing before the JV while, contrary

to MW’s assumption, not necessarily rejecting a hypothesis that there was no change in conduct

after the JV. MSW propose a specific model of tacit collusion where the domestic firms charge

market-year specific markups above Bertrand Nash prices (supermarkups). We show that the

data rejects this model.

Of course, these findings do not indicate that a model based on asymmetric information
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Table D.4: Estimates of Demand

(1) (2) (3) (4) (5)
Nested Logit RCNL RCNL Nested Logit Nested Logit

Nests All Beer All Beer All Beer Flagship/Other Flagship/Other
Data Freq. Monthly Monthly Quarterly Monthly Weekly

Real Price Coefficient -0.056 -0.083 -0.099 -0.073 -0.047
(2010 dollars) (0.017) (0.014) (0.014) (0.018) (0.011)
Nesting Coefficients

Single All Brand Nest 0.741 0.838 0.831 - -
(0.051) (0.039) (0.039)

Two Nests
Domestic Flagship - - - 0.838 0.898

(0.049) (0.040)
Other Brands - - - 0.634 0.815

(0.047) (0.037)
Income Coefficients (RCNL Models)
*constant - 0.014 0.014 - -

(0.005) (0.005)
*price - 0.001 0.001 - -

(0.000) (0.000)
*calories - 0.004 0.004 - -

(0.002) (0.002)

Median Product -2.31 -4.71 -5.41 -2.51 -3.12
Elasticity

Mean ML Brand -1.66 -3.68 -4.22 -3.06 -3.09
Price Elasticity

Mean Flagship 0.41 0.48 0.47 0.83 0.90
Diversion

% Change in Flagship -5.20% -8.24% -9.65% -4.30% -2.20%
Sales Given 75¢
Domestic Price Rise

Observations 94,656 94,656 31,777 94,656 405,004

Notes: all specifications include time period and product (brand*size) fixed effects, and use data from Jan
2005 to Dec 2011, excluding June 2008 to May 2009. All estimates use two-step optimal GMM. Instruments
are the same as in MW for the relevant specification, apart from the two nest models where we define in-
struments for the number and distance measures for other products based on products in the same nest, and
interact instruments with a flagship brand dummy. Market size is defined as 50% more than the highest sales
observed in the geographic market for monthly and quarterly specifications. For the weekly specifications it is
estimated as 50% more than the sum of the highest sales from stores observed in the scanner data that week.
ML Brand Elasticity reflects the change in ML sales when the prices of all ML products are increased. Mean
Flagship Diversion is the average proportion of lost sales that go to other flagship products (i.e., BL, ML and
CL products) when the price of a flagship product is increased. The change in flagship sales after a 75 cent
price rise is the average across pre-JV observations change in total flagship sales when the prices of all domes-
tic products are increased by 75 cents. Standard errors, clustered on the geographic market, in parentheses.
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and signaling is the “correct” model, because CI is assumed when deriving the first-order

conditions that are estimated. However, the estimates do imply that marginal costs are serially

correlated and quite volatile, a feature that plays an important role in our model. We have

also experimented with estimating conduct-model equations using data generated from the

asymmetric information model examples presented in Section 3. We find conduct parameter

estimates that are broadly consistent with those that we estimate during observed market data

in this Appendix, i.e., estimated conduct parameters are significantly greater than zero, and

may fall slightly, increase or stay roughly the same after a simulated merger.58

D.9.1 The Conduct Parameter Framework.

Our tests extend MW’s conduct parameter framework. The framework assumes that pricing is

characterized by stacked static, CI first-order conditions

(
Ωmt ◦

[
∂qmt(pmt, θ

D)

∂pmt

])
(pmt − cmt) + qmt(pmt, θ

D) = 0,

where pmt, qmt and cmt are vectors of prices, quantities and (constant) marginal costs and

∂qmt(pmt,θD)
∂pmt

is a matrix of demand derivatives.

Ωmt is the “conduct” matrix, with (row i, column j) element Ωi,j. Ωi,j = 1 if products i and

j are owned by the same firm. Under static Nash pricing, all other elements of Ωmt are zero.

MW’s baseline specification assumes static Nash pricing before the JV, but allows Ωi,j = κ

after the JV if i and j are owned by different domestic brewers. κ = 1 is consistent with joint

profit-maximization, while 0 < κ < 1 could be interpreted as reflecting partial internalization

of pricing externalities.

Given demand estimates, MW estimate the post-JV κ using equations

pmt = Wmtγ −
(

Ωmt(κ) ◦
[
∂smt(pmt, θ

D)

∂pmt

])−1

smt(pmt) + νmt. (5)

where cimt = Wimtγ + νimt and W includes time, product (brand-size) and geographic market

58One might ask why we do not do this exercise with data simulated from our calibrated model. The answer
is that identification of separate pre- and post-merger conduct parameters relies on cross-market or across-
time variation in the degree of substitution between different brands. However, in order to have a manageable
computational burden, our calibrated model assumes a single average or representative market.
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fixed effects; a “distance measure” that multiplies distance to the brewery or port with real diesel

prices, and allows for the JV to realize transportation cost efficiencies by reducing distances

from the market for MC products; and, a dummy for MC products after the JV to allow for an

additional efficiency. The identifying assumption/exclusion restriction is that the JV is assumed

not to affect AB’s marginal costs. The instruments are the variables in W and a dummy for

domestic products after the JV. The post-JV κ is identified by how much more AB’s prices

increase than the increase that can be rationalized as the static best response implied by the

static CI first-order conditions.

MW’s single exclusion restriction implies that they cannot estimate separate pre- and post-

JV κs or test whether a change in conduct is the source of the price increase.59 Our approach

is to estimate separate pre- and post-JV κs by adding additional instruments and controls. We

continue to assume that imported brands use Nash pricing and that Ωi,j = 1 when i and j

have the same owner. Note, however, that we will only use the model to test MW and MSW’s

assumptions and we will not interpret positive κs as evidence of “collusion”. As shown by

Corts (1999), some forms of tacit collusion may be consistent with estimates of κ that are less

than or equal to zero, and, as we noted above, one usually estimates positive and statistically

significant κs using data simulated from our model even though there is no collusion.

Our specifications include separate pre- and post-JV product and market fixed effects in

W , so changes in price levels after the JV do not identify conduct. To understand our choice

of instruments, consider the first-order condition for product i owned by AB

pimt = Wimtγ +
qimt
∂qimt

∂pimt

+
∑
j∈AB
j 6=i

∂qjmt

∂pimt

∂qimt

∂pimt

(pjmt − cjmt) + κ
∑
k∈M,C

∂qkmt

∂pimt

∂qimt

∂pimt

(pkmt − ckmt) + νimt.

Valid instruments will be correlated with
∑

k∈M,C

∂qkmt
∂pimt
∂qimt
∂pimt

(pkmt − ckmt) (i.e., the incremental

effect of a change in i’s price on a rival’s profits), and uncorrelated with the cost unobservable

νimt. We will use alternative instruments in the specifications below.
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D.9.2 Results: Estimates of Conduct Before and After the JV.

The first six columns in Table D.5 report conduct coefficients for the columns (1)-(3) demand

specifications in Table D.4.60 Columns (1)-(3) use the distance measures of rivals as instru-

ments, as they affect rivals’ margins, and, as MW already assume that a product’s own distance

measure is uncorrelated with νimt, the additional assumptions required are minimal.61 Columns

(4)-(9) use additional instruments in the form of the average value of the demand unobserv-

ables (ξs) for rival brewers over either the pre- or post-JV period, and the interactions of these

instruments with the distance instruments.62 These additional instruments are valid if νimt is

uncorrelated with the demand unobservables of rivals’ products. This is a stronger assumption,

although economists sometimes make an even stronger assumption that a product’s own de-

mand and marginal costs unobservables are uncorrelated in order to estimate demand (MacKay

and Miller (2019)). Columns (7)-(9) include linear domestic-market-fiscal year fixed effects in

W . These controls allow for possible correlations between local preferences and costs for do-

mestic products as a group, and cause conduct to be identified only from within-market-year

cross-brewer/-product variation. We will also use these specifications to test the MSW model,

as we explain below.

We reject Nash pricing after the JV in all nine specifications. This is, of course, consistent

with MW’s interpretation that there was tacit collusion after the JV. However, all of the

estimated pre-JV κs are positive, and some are significant, providing evidence against the

assumption of static CI Nash pricing before the JV. The estimates in columns (1)-(6) are

consistent with an increase in κ after the JV, but the estimates with market-year controls

59MW re-estimate the post-JV κ assuming, but not estimating, different pre-JV κ ≤ 0.5. These estimates
imply that κ rose after the JV, although by smaller amounts as the assumed pre-JV κ rises, as a pre-JV κ also
implies that AB would increase its prices when MC benefits from an efficiency.

60We have also estimated specifications using the two (flagship/non-flagship) nest nested logit models, and
specifications that estimate κs based only on the pricing of the flagship brands. These estimates lead us to reject
Nash pricing behavior before the JV, and the pre- and post-JV parameters are closer than those in columns
(1)-(6).

61There are eight excluded distance instruments. For AB products in market m and time t before the JV, the
(m, t) distance measure for Miller and the (m, t) distance measure for Coors are instruments. For pre-JV Miller
products, the distance measures for AB and Coors are instruments. For pre-JV Coors products, the distance
measures for Miller and AB are instruments. For AB (MC) products in market m and time t after the JV, the
(m, t) distance measure for MC (AB) is the instrument.

62Specifically, we calculate the average value of the demand residuals for the products sold by brewer b in
market m either before or after the JV, and then construct eight instruments in the same way that we construct
the instruments for distance. We average across periods because the demand unobservables are more variable
than the distance measures.
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suggest that conduct did not change, even though these estimates of κ are the most precise.

The plausibility of these static CI pricing models can also be assessed by looking at what they

imply for marginal costs and synergies. The lower panel of Table D.5 reports average implied

marginal costs for ML 12-packs. Less elastic demand and higher κ imply lower marginal costs,

and the (1), (4) and (7)-(9) costs are implausibly/impossibly low. The remaining columns

imply synergies for ML, which was being shipped the same distances before and after the JV

in most markets, that are higher than the 17.5% synergy for ML and CL that we assumed

for the column (1) specification of our model. Controlling for market and time effects, the

implied νimts (marginal cost residuals) are also serially correlated and quite volatile.63 While

cost volatility is certainly not inconsistent with CI, we view volatility as suggesting that an

interpretation of the data as reflecting tacit collusion requires a very strong CI assumption:

if CI is not satisfied, then, given that prices are volatile, collusion would be hampered by the

difficulty of distinguishing cheating from a conforming price set by a low marginal cost firm.

D.9.3 MSW’s Supermarkup Model.

The conduct model is not a fully-specified model of collusion because it does not specify the

incentives that cause firms to deviate from maximizing their own profits. Some collusion models

cannot be tested using the conduct framework, but the MSW supermarkup model can be

tested. MSW assume that, every fiscal year, both before and after the JV, a price leader

suggests a “supermarkup” on top of Bertrand Nash prices that domestic brewers should charge.

If a domestic firm fails to charge the supermarkup, a punishment phase ensues, but in a CI

subgame perfect equilibrium, the suggested supermarkup will satisfy the incentive-compatibility

constraints (ICCs). Prices may increase after a merger if the ICCs are relaxed. We can test

this model by using an appropriately defined domestic product market-fiscal year fixed effect

to control for the supermarkup. If the “supermarkup on Nash” theory is correct, estimates of

conduct κ parameters should be equal to zero once the fixed effects are included. We explain

this approach in more detail before presenting the results from two separate versions of the

test.

MSW assume that each fiscal year, a price leader announces market-specific incentive-

63The rich fixed effects in columns (7)-(9) cause the νimts to jump across fiscal years, so the estimated serial
correlation falls.
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compatible markups (mmt), in dollars, above Nash prices that all domestic brewers should

charge. Foreign brands are assumed to use static Nash pricing. This implies that, given

mmt, the first-order conditions for an AB product i are given in the following expression where

p̃D = pmt − mmt for domestic products and p̃I(p̃D) are Nash equilibrium prices of imported

brands if domestic brewers charged p̃D:

pimt−mmt = Wimtγ+
qimt(p̃D, p̃I(p̃D))
∂qimt

∂pimt
(p̃D, p̃I(p̃D)

+
∑
j∈AB
j 6=i

∂qjmt

∂pimt
(p̃D, p̃I(p̃D))

∂qimt

∂pimt
(p̃D, p̃I(p̃D))

(pjmt−mmt− cjmt) + νimt. (6)

The first-order conditions for an imported product k (say a Heineken (H) product) are the

standard static first-order conditions

pkmt = Wkmtγ +
qkmt(p)
∂qimt

∂pimt
(p)

+
∑
l∈H
l 6=k

∂qlmt

∂plmt
(p)

∂qkmt

∂pkmt
(p)

(plmt − clmt) + νkmt.

To test the model, we assume that the imported brands do use static best responses, and

we test whether FOCs such as (6) describe the pricing of domestic producers. In particular

we do this by generalizing the model to allow for a “conduct” parameter, i.e.,

pimt −mmt = Wimtγ +
qimt(p̃D, p̃I(p̃D))
∂qimt

∂pimt
(p̃D, p̃I(p̃D)

+ ...

∑
j∈AB
j 6=i

∂qjmt

∂pimt
(p̃D, p̃I(p̃D))

∂qimt

∂pimt
(p̃D, p̃I(p̃D))

(pjmt −mmt − cjmt) + κ
∑
k∈M,C

∂qkmt

∂pimt

∂qimt

∂pimt

(pkmt − ckmt) + νimt.

where, if the supermarkup explanation is correct, κ = 0. The intuition for the test is that

if the supermarkup really is a constant markup on a static Nash price then, controlling for

supermarkup using an appropriately defined fixed effect, price-setting should not be affected by

the incremental effect that a price has on the profits of other domestic brewers. On the other

hand, if there is an alternative type of deviation from CI Nash pricing then the estimated κ

may be significantly different from zero.

Testing the Supermarkup Model: Linear Controls. We use two different implementa-

tions of the test. The first is easy to implement (which means that we can use it for monthly
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data) but relies on deviating from MSW’s precise assumptions by assuming that supermarkups

enter the FOCs linearly. Specifically, suppose that a domestic product i in market m has

marginal cost cimt, and that the collusive plan operates by each domestic product being priced

according to static Nash best responses as if its marginal costs are cimt +m′mt rather than just

cimt, where m′mt is the supermarkup.64 One interpretation would be that the domestic firms

act as if they have to pay higher marginal retailing costs than they actually do, a form of tacit

collusion that might be hard to detect. In this case, the first-order condition for an AB product

is simply

pimt = Wimtγ +m′mt +
qkmt(p)
∂qimt

∂pimt
(p)

+
∑
j∈AB
j 6=i

∂qjmt

∂pimt
(p)

∂qimt

∂pimt
(p)

(pjmt −m′mt − cjmt) + νimt. (7)

and, when we generalize to allow for conduct coefficients, the estimating equation becomes

pmt = Wmtγ +mmt −
(

Ωmt(κ) ◦
[
∂smt(pt, θ

D)

∂pmt

])−1

smt(pmt) + νmt. (8)

This equation has the nice feature that the level of demand and the demand derivatives

only depend on observed prices, and the unobserved supermarkup enters linearly. This

theory can be tested by including domestic market-fiscal year fixed effects to control for m′mt,

and testing if conduct parameters equal zero. We use the domestic rival distance measures,

their ξs (averaged across their portfolios either before or after the JV) and interactions of these

variables as excluded instruments that identify the conduct parameters.

Columns (7)-(9) of Table D.5 present the results. As already discussed, we can reject κ = 0

before the JV at any significance level, and we cannot reject the hypothesis that “conduct” was

the same before and after the JV.

Testing the Supermarkup Model: Nonlinear Controls. In the actual MSW model,

supermarkups enter the first-order conditions non-linearly by affecting the values of the demand

derivatives which, for domestic products, need to be evaluated at p̃D = pmt−mmt. The second

verison of our test therefore estimates non-linear market-fiscal year fixed effects for domestic

products, where, as these fixed effects are varied, we re-evaluate the demand derivative matrix

64The incentive-compatibility constraints would determine the magnitude of the mmt supermarkup terms.
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and resolve for the Nash prices that the imported brands would charge in response. This

potentially creates a very large computational burden, especially when using the RCNL demand

model, even if we use quarterly data. To make estimation feasible, we therefore proceed as

follows.

First, we estimate all of the parameters, including the conduct parameters and the linear

parameters, separately for each fiscal year, so that we are only estimating 40 (39 supermarkup

fixed effects and 1 conduct parameter) nonlinear parameters at a time. We report the conduct

coefficients for 2005/6, 2006/7, 2009/10, and 2010/11 fiscal years (i.e., two full fiscal years before

the JV and after the JV), but we also estimate them for the partial fiscal years in the sample,

and the estimated coefficients are similar, but less precise. We expect separate estimation to

reduce the econometric efficiency and the power of our test, as will the fact that we do not

restrict the supermarkups to be consistent with cross-market incentive compatibility constraints

on the domestic brewers. However, in practice, our estimates of the conduct parameters are

precise. We also use the quarterly supply and RCNL demand model. Recall that the results

using this model in columns (3) and (6) of Table D.5 were the most favorable to the hypothesis

of Nash pricing before the JV.

Second, and more importantly, rather than recomputing demand derivatives, import best

responses prices and inverting matrices to back out implied marginal costs many hundreds of

times during estimation, we use interpolation from values that are pre-computed. Specifically,

before estimation, we compute implied marginal costs for each observed product-market-quarter

observation on a grid of supermarkups (mmt = {0, 0.25, 0.50, ..., 6}) and conduct parameters

(κ = {0, 0.05, ..., 1.1}) then use cubic interpolation to get the required values during estimation

(restricting the supermarkups and conduct parameters to lie within these ranges). As a result,

the computational burden for each function evaluation involves the computation of around

6,000 cubic interpolations.

As usual, one might be skeptical about a researcher’s ability to simultaneously estimate 40

nonlinear parameters. However, in practice, MATLAB’s fmincon algorithm works very well on

this problem even when it uses numerical derivatives, and it delivers the same estimates from

alternative starting values. The conduct parameter estimates are also comfortingly consistent

with those from testing version 1 of the supermarket model.
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The results are reported in Column (10) of Table D.5. Consistent with column (9), the

reported conduct parameters are precisely estimated and are between 0.9 and 1, and, because

estimated supermarkups are also positive, most of the implied marginal costs are negative.

Therefore, we can clearly reject the MSW formulation of CI collusion, although, as we have

emphasized, this does not imply that all models of CI collusion can be rejected.
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